本文整理汇总了Python中nets.inception_utils.inception_arg_scope方法的典型用法代码示例。如果您正苦于以下问题:Python inception_utils.inception_arg_scope方法的具体用法?Python inception_utils.inception_arg_scope怎么用?Python inception_utils.inception_arg_scope使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nets.inception_utils
的用法示例。
在下文中一共展示了inception_utils.inception_arg_scope方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: endpoints
# 需要导入模块: from nets import inception_utils [as 别名]
# 或者: from nets.inception_utils import inception_arg_scope [as 别名]
def endpoints(image, is_training):
if image.get_shape().ndims != 4:
raise ValueError('Input must be of size [batch, height, width, 3]')
image = image - tf.constant(_RGB_MEAN, dtype=tf.float32, shape=(1,1,1,3))
with tf.contrib.slim.arg_scope(inception_arg_scope(batch_norm_decay=0.9, weight_decay=0.0002)):
_, endpoints = inception_v4(image, num_classes=None, is_training=is_training)
print('endpoints: {}'.format(endpoints))
endpoints['model_output'] = endpoints['global_pool'] = tf.reduce_mean(
endpoints['Mixed_7d'], [1, 2], name='pool5', keep_dims=False)
return endpoints, 'InceptionV4'
示例2: model
# 需要导入模块: from nets import inception_utils [as 别名]
# 或者: from nets.inception_utils import inception_arg_scope [as 别名]
def model(images, weight_decay=1e-5, is_training=True):
images = mean_image_subtraction(images)
with slim.arg_scope(inception_arg_scope(weight_decay=weight_decay)):
logits, end_points = inception_resnet_v2(images, num_classes=None, is_training=is_training)
for key in end_points.keys():
print(key, end_points[key])
return logits, end_points
# print(end_points.keys())
# with tf.variable_scope('feature_fusion', values=[end_points.values()]):
# batch_norm_params = {
# 'decay': 0.997,
# 'epsilon': 1e-5,
# 'scale': True,
# 'is_training': is_training
# }
# with slim.arg_scope([slim.conv2d], activation_fn=tf.nn.relu, normalizer_fn=slim.batch_norm,
# normalizer_params=batch_norm_params, weights_regularizer=slim.l2_regularizer(weight_decay)):
# f = [end_points['Scale-5'], # 16
# end_points['Scale-4'], # 32
# end_points['Scale-3'], # 64
# end_points['Scale-2'], # 128
# end_points['Scale-1']] # 256
# g = [None, None, None, None, None]
# h = [None, None, None, None, None]
# num_outputs = [None, 1024, 128, 64, 32]
# for i in range(5):
# if i == 0:
# h[i] = f[i]
# else:
# # 相当于一个融合,减少维度的过程,kernel size等于1
# c1_1 = slim.conv2d(tf.concat([g[i-1], f[i]], axis=-1), num_outputs=num_outputs[i], kernel_size=1)
# h[i] = slim.conv2d(c1_1, num_outputs=num_outputs[i], kernel_size=3)
# if i <= 3:
# g[i] = unpool(h[i])
# # g[i] = slim.conv2d(g[i], num_outputs[i + 1], 1)
# # g[i] = slim.conv2d(g[i], num_outputs[i + 1], 3)
# else:
# g[i] = slim.conv2d(h[i], num_outputs[i], 3)
# print("Shape of f_{} {}, h_{} {}, g_{} {}".format(i, f[i].shape, i, h[i].shape, i, g[i].shape))
# F_score = slim.conv2d(g[3], 1, 1, activation_fn=tf.nn.sigmoid, normalizer_fn=None)
# if FLAGS.geometry == 'RBOX':
# # 4 channel of axis aligned bbox and 1 channel rotation angle
# print 'RBOX'
# geo_map = slim.conv2d(g[4], 4, 1, activation_fn=tf.nn.sigmoid, normalizer_fn=None) * FLAGS.text_scale
# angle_map = (slim.conv2d(g[4], 1, 1, activation_fn=tf.nn.sigmoid,
# normalizer_fn=None) - 0.5) * np.pi / 2 # angle is between [-45, 45]
# F_geometry = tf.concat([geo_map, angle_map], axis=-1)
# else:
# # LD modify
# # concated_score_map = tf.concat([F_score, g[3]], axis=-1)
# # F_geometry = slim.conv2d(g[4], 8, 1, activation_fn=parametric_relu,
# # normalizer_fn=None) * FLAGS.text_scale
# assert False
# return F_score, F_geometry