本文整理汇总了Python中nets.inception_resnet_v2.inception_resnet_v2_base方法的典型用法代码示例。如果您正苦于以下问题:Python inception_resnet_v2.inception_resnet_v2_base方法的具体用法?Python inception_resnet_v2.inception_resnet_v2_base怎么用?Python inception_resnet_v2.inception_resnet_v2_base使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nets.inception_resnet_v2
的用法示例。
在下文中一共展示了inception_resnet_v2.inception_resnet_v2_base方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _extract_proposal_features
# 需要导入模块: from nets import inception_resnet_v2 [as 别名]
# 或者: from nets.inception_resnet_v2 import inception_resnet_v2_base [as 别名]
def _extract_proposal_features(self, preprocessed_inputs, scope):
"""Extracts first stage RPN features.
Extracts features using the first half of the Inception Resnet v2 network.
We construct the network in `align_feature_maps=True` mode, which means
that all VALID paddings in the network are changed to SAME padding so that
the feature maps are aligned.
Args:
preprocessed_inputs: A [batch, height, width, channels] float32 tensor
representing a batch of images.
scope: A scope name.
Returns:
rpn_feature_map: A tensor with shape [batch, height, width, depth]
Raises:
InvalidArgumentError: If the spatial size of `preprocessed_inputs`
(height or width) is less than 33.
ValueError: If the created network is missing the required activation.
"""
if len(preprocessed_inputs.get_shape().as_list()) != 4:
raise ValueError('`preprocessed_inputs` must be 4 dimensional, got a '
'tensor of shape %s' % preprocessed_inputs.get_shape())
with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope(
weight_decay=self._weight_decay)):
# Forces is_training to False to disable batch norm update.
with slim.arg_scope([slim.batch_norm], is_training=False):
with tf.variable_scope('InceptionResnetV2',
reuse=self._reuse_weights) as scope:
rpn_feature_map, _ = (
inception_resnet_v2.inception_resnet_v2_base(
preprocessed_inputs, final_endpoint='PreAuxLogits',
scope=scope, output_stride=self._first_stage_features_stride,
align_feature_maps=True))
return rpn_feature_map
示例2: _extract_proposal_features
# 需要导入模块: from nets import inception_resnet_v2 [as 别名]
# 或者: from nets.inception_resnet_v2 import inception_resnet_v2_base [as 别名]
def _extract_proposal_features(self, preprocessed_inputs, scope):
"""Extracts first stage RPN features.
Extracts features using the first half of the Inception Resnet v2 network.
We construct the network in `align_feature_maps=True` mode, which means
that all VALID paddings in the network are changed to SAME padding so that
the feature maps are aligned.
Args:
preprocessed_inputs: A [batch, height, width, channels] float32 tensor
representing a batch of images.
scope: A scope name.
Returns:
rpn_feature_map: A tensor with shape [batch, height, width, depth]
Raises:
InvalidArgumentError: If the spatial size of `preprocessed_inputs`
(height or width) is less than 33.
ValueError: If the created network is missing the required activation.
"""
if len(preprocessed_inputs.get_shape().as_list()) != 4:
raise ValueError('`preprocessed_inputs` must be 4 dimensional, got a '
'tensor of shape %s' % preprocessed_inputs.get_shape())
with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope(
weight_decay=self._weight_decay)):
# Forces is_training to False to disable batch norm update.
with slim.arg_scope([slim.batch_norm],
is_training=self._train_batch_norm):
with tf.variable_scope('InceptionResnetV2',
reuse=self._reuse_weights) as scope:
return inception_resnet_v2.inception_resnet_v2_base(
preprocessed_inputs, final_endpoint='PreAuxLogits',
scope=scope, output_stride=self._first_stage_features_stride,
align_feature_maps=True)
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:37,代码来源:faster_rcnn_inception_resnet_v2_feature_extractor.py
示例3: _extract_proposal_features
# 需要导入模块: from nets import inception_resnet_v2 [as 别名]
# 或者: from nets.inception_resnet_v2 import inception_resnet_v2_base [as 别名]
def _extract_proposal_features(self, preprocessed_inputs, scope):
"""Extracts first stage RPN features.
Extracts features using the first half of the Inception Resnet v2 network.
We construct the network in `align_feature_maps=True` mode, which means
that all VALID paddings in the network are changed to SAME padding so that
the feature maps are aligned.
Args:
preprocessed_inputs: A [batch, height, width, channels] float32 tensor
representing a batch of images.
scope: A scope name.
Returns:
rpn_feature_map: A tensor with shape [batch, height, width, depth]
Raises:
InvalidArgumentError: If the spatial size of `preprocessed_inputs`
(height or width) is less than 33.
ValueError: If the created network is missing the required activation.
"""
if len(preprocessed_inputs.get_shape().as_list()) != 4:
raise ValueError('`preprocessed_inputs` must be 4 dimensional, got a '
'tensor of shape %s' % preprocessed_inputs.get_shape())
with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope(
weight_decay=self._weight_decay)):
# Forces is_training to False to disable batch norm update.
with slim.arg_scope([slim.batch_norm],
is_training=self._train_batch_norm):
with tf.variable_scope('InceptionResnetV2',
reuse=self._reuse_weights) as scope:
rpn_feature_map, _ = (
inception_resnet_v2.inception_resnet_v2_base(
preprocessed_inputs, final_endpoint='PreAuxLogits',
scope=scope, output_stride=self._first_stage_features_stride,
align_feature_maps=True))
return rpn_feature_map
示例4: _extract_proposal_features
# 需要导入模块: from nets import inception_resnet_v2 [as 别名]
# 或者: from nets.inception_resnet_v2 import inception_resnet_v2_base [as 别名]
def _extract_proposal_features(self, preprocessed_inputs, scope):
"""Extracts first stage RPN features.
Extracts features using the first half of the Inception Resnet v2 network.
We construct the network in `align_feature_maps=True` mode, which means
that all VALID paddings in the network are changed to SAME padding so that
the feature maps are aligned.
Args:
preprocessed_inputs: A [batch, height, width, channels] float32 tensor
representing a batch of images.
scope: A scope name.
Returns:
rpn_feature_map: A tensor with shape [batch, height, width, depth]
Raises:
InvalidArgumentError: If the spatial size of `preprocessed_inputs`
(height or width) is less than 33.
ValueError: If the created network is missing the required activation.
"""
if len(preprocessed_inputs.get_shape().as_list()) != 4:
raise ValueError('`preprocessed_inputs` must be 4 dimensional, got a '
'tensor of shape %s' % preprocessed_inputs.get_shape())
with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope(
weight_decay=self._weight_decay, trainable=self._is_training)):
# Forces is_training to False to disable batch norm update.
with slim.arg_scope([slim.batch_norm], is_training=False):
with tf.variable_scope('InceptionResnetV2',
reuse=self._reuse_weights) as scope:
rpn_feature_map, _ = (
inception_resnet_v2.inception_resnet_v2_base(
preprocessed_inputs, final_endpoint='PreAuxLogits',
scope=scope, output_stride=self._first_stage_features_stride,
align_feature_maps=True))
return rpn_feature_map