本文整理汇总了Python中nets.inception_resnet_v2.inception_resnet_v2_arg_scope方法的典型用法代码示例。如果您正苦于以下问题:Python inception_resnet_v2.inception_resnet_v2_arg_scope方法的具体用法?Python inception_resnet_v2.inception_resnet_v2_arg_scope怎么用?Python inception_resnet_v2.inception_resnet_v2_arg_scope使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nets.inception_resnet_v2
的用法示例。
在下文中一共展示了inception_resnet_v2.inception_resnet_v2_arg_scope方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _extract_proposal_features
# 需要导入模块: from nets import inception_resnet_v2 [as 别名]
# 或者: from nets.inception_resnet_v2 import inception_resnet_v2_arg_scope [as 别名]
def _extract_proposal_features(self, preprocessed_inputs, scope):
"""Extracts first stage RPN features.
Extracts features using the first half of the Inception Resnet v2 network.
We construct the network in `align_feature_maps=True` mode, which means
that all VALID paddings in the network are changed to SAME padding so that
the feature maps are aligned.
Args:
preprocessed_inputs: A [batch, height, width, channels] float32 tensor
representing a batch of images.
scope: A scope name.
Returns:
rpn_feature_map: A tensor with shape [batch, height, width, depth]
Raises:
InvalidArgumentError: If the spatial size of `preprocessed_inputs`
(height or width) is less than 33.
ValueError: If the created network is missing the required activation.
"""
if len(preprocessed_inputs.get_shape().as_list()) != 4:
raise ValueError('`preprocessed_inputs` must be 4 dimensional, got a '
'tensor of shape %s' % preprocessed_inputs.get_shape())
with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope(
weight_decay=self._weight_decay)):
# Forces is_training to False to disable batch norm update.
with slim.arg_scope([slim.batch_norm], is_training=False):
with tf.variable_scope('InceptionResnetV2',
reuse=self._reuse_weights) as scope:
rpn_feature_map, _ = (
inception_resnet_v2.inception_resnet_v2_base(
preprocessed_inputs, final_endpoint='PreAuxLogits',
scope=scope, output_stride=self._first_stage_features_stride,
align_feature_maps=True))
return rpn_feature_map
示例2: _extract_proposal_features
# 需要导入模块: from nets import inception_resnet_v2 [as 别名]
# 或者: from nets.inception_resnet_v2 import inception_resnet_v2_arg_scope [as 别名]
def _extract_proposal_features(self, preprocessed_inputs, scope):
"""Extracts first stage RPN features.
Extracts features using the first half of the Inception Resnet v2 network.
We construct the network in `align_feature_maps=True` mode, which means
that all VALID paddings in the network are changed to SAME padding so that
the feature maps are aligned.
Args:
preprocessed_inputs: A [batch, height, width, channels] float32 tensor
representing a batch of images.
scope: A scope name.
Returns:
rpn_feature_map: A tensor with shape [batch, height, width, depth]
Raises:
InvalidArgumentError: If the spatial size of `preprocessed_inputs`
(height or width) is less than 33.
ValueError: If the created network is missing the required activation.
"""
if len(preprocessed_inputs.get_shape().as_list()) != 4:
raise ValueError('`preprocessed_inputs` must be 4 dimensional, got a '
'tensor of shape %s' % preprocessed_inputs.get_shape())
with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope(
weight_decay=self._weight_decay)):
# Forces is_training to False to disable batch norm update.
with slim.arg_scope([slim.batch_norm],
is_training=self._train_batch_norm):
with tf.variable_scope('InceptionResnetV2',
reuse=self._reuse_weights) as scope:
return inception_resnet_v2.inception_resnet_v2_base(
preprocessed_inputs, final_endpoint='PreAuxLogits',
scope=scope, output_stride=self._first_stage_features_stride,
align_feature_maps=True)
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:37,代码来源:faster_rcnn_inception_resnet_v2_feature_extractor.py
示例3: _extract_proposal_features
# 需要导入模块: from nets import inception_resnet_v2 [as 别名]
# 或者: from nets.inception_resnet_v2 import inception_resnet_v2_arg_scope [as 别名]
def _extract_proposal_features(self, preprocessed_inputs, scope):
"""Extracts first stage RPN features.
Extracts features using the first half of the Inception Resnet v2 network.
We construct the network in `align_feature_maps=True` mode, which means
that all VALID paddings in the network are changed to SAME padding so that
the feature maps are aligned.
Args:
preprocessed_inputs: A [batch, height, width, channels] float32 tensor
representing a batch of images.
scope: A scope name.
Returns:
rpn_feature_map: A tensor with shape [batch, height, width, depth]
Raises:
InvalidArgumentError: If the spatial size of `preprocessed_inputs`
(height or width) is less than 33.
ValueError: If the created network is missing the required activation.
"""
if len(preprocessed_inputs.get_shape().as_list()) != 4:
raise ValueError('`preprocessed_inputs` must be 4 dimensional, got a '
'tensor of shape %s' % preprocessed_inputs.get_shape())
with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope(
weight_decay=self._weight_decay)):
# Forces is_training to False to disable batch norm update.
with slim.arg_scope([slim.batch_norm],
is_training=self._train_batch_norm):
with tf.variable_scope('InceptionResnetV2',
reuse=self._reuse_weights) as scope:
rpn_feature_map, _ = (
inception_resnet_v2.inception_resnet_v2_base(
preprocessed_inputs, final_endpoint='PreAuxLogits',
scope=scope, output_stride=self._first_stage_features_stride,
align_feature_maps=True))
return rpn_feature_map
示例4: graph_small
# 需要导入模块: from nets import inception_resnet_v2 [as 别名]
# 或者: from nets.inception_resnet_v2 import inception_resnet_v2_arg_scope [as 别名]
def graph_small(x, target_class_input, i, x_max, x_min, grad):
eps = 2.0 * FLAGS.max_epsilon / 255.0
alpha = eps / 28
momentum = FLAGS.momentum
num_classes = 1001
with slim.arg_scope(inception_v3.inception_v3_arg_scope()):
logits_v3, end_points_v3 = inception_v3.inception_v3(
x, num_classes=num_classes, is_training=False)
with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope()):
logits_ensadv_res_v2, end_points_ensadv_res_v2 = inception_resnet_v2.inception_resnet_v2(
x, num_classes=num_classes, is_training=False, scope='EnsAdvInceptionResnetV2')
one_hot_target_class = tf.one_hot(target_class_input, num_classes)
logits = (logits_v3 + 2 * logits_ensadv_res_v2) / 3
auxlogits = (end_points_v3['AuxLogits'] + 2 * end_points_ensadv_res_v2['AuxLogits']) / 3
cross_entropy = tf.losses.softmax_cross_entropy(one_hot_target_class,
logits,
label_smoothing=0.0,
weights=1.0)
cross_entropy += tf.losses.softmax_cross_entropy(one_hot_target_class,
auxlogits,
label_smoothing=0.0,
weights=0.4)
noise = tf.gradients(cross_entropy, x)[0]
noise = noise / tf.reshape(tf.contrib.keras.backend.std(tf.reshape(noise, [FLAGS.batch_size, -1]), axis=1), [FLAGS.batch_size, 1, 1, 1])
noise = momentum * grad + noise
noise = noise / tf.reshape(tf.contrib.keras.backend.std(tf.reshape(noise, [FLAGS.batch_size, -1]), axis=1), [FLAGS.batch_size, 1, 1, 1])
x = x - alpha * tf.clip_by_value(tf.round(noise), -2, 2)
x = tf.clip_by_value(x, x_min, x_max)
i = tf.add(i, 1)
return x, target_class_input, i, x_max, x_min, noise
示例5: _extract_proposal_features
# 需要导入模块: from nets import inception_resnet_v2 [as 别名]
# 或者: from nets.inception_resnet_v2 import inception_resnet_v2_arg_scope [as 别名]
def _extract_proposal_features(self, preprocessed_inputs, scope):
"""Extracts first stage RPN features.
Extracts features using the first half of the Inception Resnet v2 network.
We construct the network in `align_feature_maps=True` mode, which means
that all VALID paddings in the network are changed to SAME padding so that
the feature maps are aligned.
Args:
preprocessed_inputs: A [batch, height, width, channels] float32 tensor
representing a batch of images.
scope: A scope name.
Returns:
rpn_feature_map: A tensor with shape [batch, height, width, depth]
Raises:
InvalidArgumentError: If the spatial size of `preprocessed_inputs`
(height or width) is less than 33.
ValueError: If the created network is missing the required activation.
"""
if len(preprocessed_inputs.get_shape().as_list()) != 4:
raise ValueError('`preprocessed_inputs` must be 4 dimensional, got a '
'tensor of shape %s' % preprocessed_inputs.get_shape())
with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope(
weight_decay=self._weight_decay, trainable=self._is_training)):
# Forces is_training to False to disable batch norm update.
with slim.arg_scope([slim.batch_norm], is_training=False):
with tf.variable_scope('InceptionResnetV2',
reuse=self._reuse_weights) as scope:
rpn_feature_map, _ = (
inception_resnet_v2.inception_resnet_v2_base(
preprocessed_inputs, final_endpoint='PreAuxLogits',
scope=scope, output_stride=self._first_stage_features_stride,
align_feature_maps=True))
return rpn_feature_map
示例6: _extract_box_classifier_features
# 需要导入模块: from nets import inception_resnet_v2 [as 别名]
# 或者: from nets.inception_resnet_v2 import inception_resnet_v2_arg_scope [as 别名]
def _extract_box_classifier_features(self, proposal_feature_maps, scope):
"""Extracts second stage box classifier features.
This function reconstructs the "second half" of the Inception ResNet v2
network after the part defined in `_extract_proposal_features`.
Args:
proposal_feature_maps: A 4-D float tensor with shape
[batch_size * self.max_num_proposals, crop_height, crop_width, depth]
representing the feature map cropped to each proposal.
scope: A scope name.
Returns:
proposal_classifier_features: A 4-D float tensor with shape
[batch_size * self.max_num_proposals, height, width, depth]
representing box classifier features for each proposal.
"""
with tf.variable_scope('InceptionResnetV2', reuse=self._reuse_weights):
with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope(
weight_decay=self._weight_decay)):
# Forces is_training to False to disable batch norm update.
with slim.arg_scope([slim.batch_norm], is_training=False):
with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
stride=1, padding='SAME'):
with tf.variable_scope('Mixed_7a'):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(proposal_feature_maps,
256, 1, scope='Conv2d_0a_1x1')
tower_conv_1 = slim.conv2d(
tower_conv, 384, 3, stride=2,
padding='VALID', scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_1'):
tower_conv1 = slim.conv2d(
proposal_feature_maps, 256, 1, scope='Conv2d_0a_1x1')
tower_conv1_1 = slim.conv2d(
tower_conv1, 288, 3, stride=2,
padding='VALID', scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_2'):
tower_conv2 = slim.conv2d(
proposal_feature_maps, 256, 1, scope='Conv2d_0a_1x1')
tower_conv2_1 = slim.conv2d(tower_conv2, 288, 3,
scope='Conv2d_0b_3x3')
tower_conv2_2 = slim.conv2d(
tower_conv2_1, 320, 3, stride=2,
padding='VALID', scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_3'):
tower_pool = slim.max_pool2d(
proposal_feature_maps, 3, stride=2, padding='VALID',
scope='MaxPool_1a_3x3')
net = tf.concat(
[tower_conv_1, tower_conv1_1, tower_conv2_2, tower_pool], 3)
net = slim.repeat(net, 9, inception_resnet_v2.block8, scale=0.20)
net = inception_resnet_v2.block8(net, activation_fn=None)
proposal_classifier_features = slim.conv2d(
net, 1536, 1, scope='Conv2d_7b_1x1')
return proposal_classifier_features