本文整理汇总了Python中nets.dcgan.discriminator方法的典型用法代码示例。如果您正苦于以下问题:Python dcgan.discriminator方法的具体用法?Python dcgan.discriminator怎么用?Python dcgan.discriminator使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nets.dcgan
的用法示例。
在下文中一共展示了dcgan.discriminator方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_discriminator_graph
# 需要导入模块: from nets import dcgan [as 别名]
# 或者: from nets.dcgan import discriminator [as 别名]
def test_discriminator_graph(self):
# Check graph construction for a number of image size/depths and batch
# sizes.
for i, batch_size in zip(xrange(1, 6), xrange(3, 8)):
tf.reset_default_graph()
img_w = 2 ** i
image = tf.random_uniform([batch_size, img_w, img_w, 3], -1, 1)
output, end_points = dcgan.discriminator(
image,
depth=32)
self.assertAllEqual([batch_size, 1], output.get_shape().as_list())
expected_names = ['conv%i' % j for j in xrange(1, i+1)] + ['logits']
self.assertSetEqual(set(expected_names), set(end_points.keys()))
# Check layer depths.
for j in range(1, i+1):
layer = end_points['conv%i' % j]
self.assertEqual(32 * 2**(j-1), layer.get_shape().as_list()[-1])
示例2: test_discriminator_invalid_input
# 需要导入模块: from nets import dcgan [as 别名]
# 或者: from nets.dcgan import discriminator [as 别名]
def test_discriminator_invalid_input(self):
wrong_dim_img = tf.zeros([5, 32, 32])
with self.assertRaises(ValueError):
dcgan.discriminator(wrong_dim_img)
spatially_undefined_shape = tf.placeholder(tf.float32, [5, 32, None, 3])
with self.assertRaises(ValueError):
dcgan.discriminator(spatially_undefined_shape)
not_square = tf.zeros([5, 32, 16, 3])
with self.assertRaisesRegexp(ValueError, 'not have equal width and height'):
dcgan.discriminator(not_square)
not_power_2 = tf.zeros([5, 30, 30, 3])
with self.assertRaisesRegexp(ValueError, 'not a power of 2'):
dcgan.discriminator(not_power_2)