当前位置: 首页>>代码示例>>Python>>正文


Python models.Model方法代码示例

本文整理汇总了Python中neon.models.Model方法的典型用法代码示例。如果您正苦于以下问题:Python models.Model方法的具体用法?Python models.Model怎么用?Python models.Model使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在neon.models的用法示例。


在下文中一共展示了models.Model方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create_model

# 需要导入模块: from neon import models [as 别名]
# 或者: from neon.models import Model [as 别名]
def create_model(args, hyper_params):
    # setup layers
    imagenet_layers = [
        Conv((11, 11, 64), init=Gaussian(scale=0.01), bias=Constant(0), activation=Rectlin(),
             padding=3, strides=4),
        Pooling(3, strides=2),
        Conv((5, 5, 192), init=Gaussian(scale=0.01), bias=Constant(1), activation=Rectlin(),
             padding=2),
        Pooling(3, strides=2),
        Conv((3, 3, 384), init=Gaussian(scale=0.03), bias=Constant(0), activation=Rectlin(),
             padding=1),
        Conv((3, 3, 256), init=Gaussian(scale=0.03), bias=Constant(1), activation=Rectlin(),
             padding=1),
        Conv((3, 3, 256), init=Gaussian(scale=0.03), bias=Constant(1), activation=Rectlin(),
             padding=1),
        Pooling(3, strides=2),
        Affine(nout=4096, init=Gaussian(scale=0.01), bias=Constant(1), activation=Rectlin()),
        Dropout(keep=0.5),
        Affine(nout=4096, init=Gaussian(scale=0.01), bias=Constant(1), activation=Rectlin()),
        # The following layers are used in Alexnet, but are not used in the new model
        Dropout(keep=0.5),
        # Affine(nout=1000, init=Gaussian(scale=0.01), bias=Constant(-7), activation=Softmax())
    ]
    
    target_layers = imagenet_layers + [    
        Affine(nout=4096, init=Gaussian(scale=0.005), bias=Constant(.1), activation=Rectlin()),
        Dropout(keep=0.5),
        Affine(nout=21, init=Gaussian(scale=0.01), bias=Constant(0), activation=Softmax())]
    
    # setup optimizer
    opt = GradientDescentMomentum(hyper_params.learning_rate_scale, 
                                  hyper_params.momentum, wdecay=0.0005,
                                  schedule=hyper_params.learning_rate_sched)
    
    # setup model
    if args.model_file:
        model = Model(layers=args.model_file)
    else:
        model = Model(layers=target_layers)
    
    return model, opt 
开发者ID:NervanaSystems,项目名称:ModelZoo,代码行数:43,代码来源:transfer_learning.py

示例2: create_network

# 需要导入模块: from neon import models [as 别名]
# 或者: from neon.models import Model [as 别名]
def create_network():
    init = Kaiming()
    padding = dict(pad_d=1, pad_h=1, pad_w=1)
    strides = dict(str_d=2, str_h=2, str_w=2)
    dilation = dict(dil_d=2, dil_h=2, dil_w=2)
    common = dict(init=init, batch_norm=True, activation=Rectlin())
    layers = [
        Conv((9, 9, 9, 16), padding=padding, strides=strides, init=init, activation=Rectlin()),
        Conv((5, 5, 5, 32), dilation=dilation, **common),
        Conv((3, 3, 3, 64), dilation=dilation, **common),
        Pooling((2, 2, 2), padding=padding, strides=strides),
        Conv((2, 2, 2, 128), **common),
        Conv((2, 2, 2, 128), **common),
        Conv((2, 2, 2, 128), **common),
        Conv((2, 2, 2, 256), **common),
        Conv((2, 2, 2, 1024), **common),
        Conv((2, 2, 2, 4096), **common),
        Conv((2, 2, 2, 2048), **common),
        Conv((2, 2, 2, 1024), **common),
        Dropout(),
        Affine(2, init=Kaiming(local=False), batch_norm=True, activation=Softmax())
    ]
    return Model(layers=layers)


# Parse the command line arguments 
开发者ID:anlthms,项目名称:dsb-2017,代码行数:28,代码来源:run.py

示例3: __init__

# 需要导入模块: from neon import models [as 别名]
# 或者: from neon.models import Model [as 别名]
def __init__(self, env, args, rng, name = "DQNNeon"):
        """ Initializes a network based on the Neon framework.

        Args:
            env (AtariEnv): The envirnoment in which the agent actuates.
            args (argparse.Namespace): All settings either with a default value or set via command line arguments.
            rng (mtrand.RandomState): initialized Mersenne Twister pseudo-random number generator.
            name (str): The name of the network object.

        Note:
            This function should always call the base class first to initialize
            the common values for the networks.
        """
        _logger.info("Initializing new object of type " + str(type(self).__name__))
        super(DQNNeon, self).__init__(env, args, rng, name)
        self.input_shape = (self.sequence_length,) + self.frame_dims + (self.batch_size,)
        self.dummy_batch = np.zeros((self.batch_size, self.sequence_length) + self.frame_dims, dtype=np.uint8)
        self.batch_norm = args.batch_norm

        self.be = gen_backend(
                backend = args.backend,
                batch_size = args.batch_size,
                rng_seed = args.random_seed,
                device_id = args.device_id,
                datatype = np.dtype(args.datatype).type,
                stochastic_round = args.stochastic_round)

        # prepare tensors once and reuse them
        self.input = self.be.empty(self.input_shape)
        self.input.lshape = self.input_shape # HACK: needed for convolutional networks
        self.targets = self.be.empty((self.output_shape, self.batch_size))

        # create model
        layers = self._create_layer()
        self.model = Model(layers = layers)
        self.cost_func = GeneralizedCost(costfunc = SumSquared())
        # Bug fix
        for l in self.model.layers.layers:
            l.parallelism = 'Disabled'
        self.model.initialize(self.input_shape[:-1], self.cost_func)

        self._set_optimizer()

        if not self.args.load_weights == None:
            self.load_weights(self.args.load_weights)

        # create target model
        if self.target_update_frequency:
            layers = self._create_layer()
            self.target_model = Model(layers)
            # Bug fix
            for l in self.target_model.layers.layers:
                l.parallelism = 'Disabled'
            self.target_model.initialize(self.input_shape[:-1])
        else:
            self.target_model = self.model

        self.callback = None
        _logger.debug("%s" % self) 
开发者ID:cowhi,项目名称:deepatari,代码行数:61,代码来源:dqnneon.py

示例4: main

# 需要导入模块: from neon import models [as 别名]
# 或者: from neon.models import Model [as 别名]
def main():
    parser = get_parser()
    args = parser.parse_args()
    print('Args:', args)

    loggingLevel = logging.DEBUG if args.verbose else logging.INFO
    logging.basicConfig(level=loggingLevel, format='')

    ext = extension_from_parameters(args)

    loader = p1b3.DataLoader(feature_subsample=args.feature_subsample,
                             scaling=args.scaling,
                             drug_features=args.drug_features,
                             scramble=args.scramble,
                             min_logconc=args.min_logconc,
                             max_logconc=args.max_logconc,
                             subsample=args.subsample,
                             category_cutoffs=args.category_cutoffs)

    # initializer = Gaussian(loc=0.0, scale=0.01)
    initializer = GlorotUniform()
    activation = get_function(args.activation)()

    layers = []
    reshape = None

    if args.convolution and args.convolution[0]:
        reshape = (1, loader.input_dim, 1)
        layer_list = list(range(0, len(args.convolution), 3))
        for l, i in enumerate(layer_list):
            nb_filter = args.convolution[i]
            filter_len = args.convolution[i+1]
            stride = args.convolution[i+2]
            # print(nb_filter, filter_len, stride)
            # fshape: (height, width, num_filters).
            layers.append(Conv((1, filter_len, nb_filter), strides={'str_h':1, 'str_w':stride}, init=initializer, activation=activation))
            if args.pool:
                layers.append(Pooling((1, args.pool)))

    for layer in args.dense:
        if layer:
            layers.append(Affine(nout=layer, init=initializer, activation=activation))
        if args.drop:
            layers.append(Dropout(keep=(1-args.drop)))
    layers.append(Affine(nout=1, init=initializer, activation=neon.transforms.Identity()))

    model = Model(layers=layers)

    train_iter = ConcatDataIter(loader, ndata=args.train_samples, lshape=reshape, datatype=args.datatype)
    val_iter = ConcatDataIter(loader, partition='val', ndata=args.val_samples, lshape=reshape, datatype=args.datatype)

    cost = GeneralizedCost(get_function(args.loss)())
    optimizer = get_function(args.optimizer)()
    callbacks = Callbacks(model, eval_set=val_iter, **args.callback_args)

    model.fit(train_iter, optimizer=optimizer, num_epochs=args.epochs, cost=cost, callbacks=callbacks) 
开发者ID:ECP-CANDLE,项目名称:Benchmarks,代码行数:58,代码来源:p1b3_baseline_neon.py


注:本文中的neon.models.Model方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。