当前位置: 首页>>代码示例>>Python>>正文


Python initializers.Gaussian方法代码示例

本文整理汇总了Python中neon.initializers.Gaussian方法的典型用法代码示例。如果您正苦于以下问题:Python initializers.Gaussian方法的具体用法?Python initializers.Gaussian怎么用?Python initializers.Gaussian使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在neon.initializers的用法示例。


在下文中一共展示了initializers.Gaussian方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create_model

# 需要导入模块: from neon import initializers [as 别名]
# 或者: from neon.initializers import Gaussian [as 别名]
def create_model(args, hyper_params):
    # setup layers
    imagenet_layers = [
        Conv((11, 11, 64), init=Gaussian(scale=0.01), bias=Constant(0), activation=Rectlin(),
             padding=3, strides=4),
        Pooling(3, strides=2),
        Conv((5, 5, 192), init=Gaussian(scale=0.01), bias=Constant(1), activation=Rectlin(),
             padding=2),
        Pooling(3, strides=2),
        Conv((3, 3, 384), init=Gaussian(scale=0.03), bias=Constant(0), activation=Rectlin(),
             padding=1),
        Conv((3, 3, 256), init=Gaussian(scale=0.03), bias=Constant(1), activation=Rectlin(),
             padding=1),
        Conv((3, 3, 256), init=Gaussian(scale=0.03), bias=Constant(1), activation=Rectlin(),
             padding=1),
        Pooling(3, strides=2),
        Affine(nout=4096, init=Gaussian(scale=0.01), bias=Constant(1), activation=Rectlin()),
        Dropout(keep=0.5),
        Affine(nout=4096, init=Gaussian(scale=0.01), bias=Constant(1), activation=Rectlin()),
        # The following layers are used in Alexnet, but are not used in the new model
        Dropout(keep=0.5),
        # Affine(nout=1000, init=Gaussian(scale=0.01), bias=Constant(-7), activation=Softmax())
    ]
    
    target_layers = imagenet_layers + [    
        Affine(nout=4096, init=Gaussian(scale=0.005), bias=Constant(.1), activation=Rectlin()),
        Dropout(keep=0.5),
        Affine(nout=21, init=Gaussian(scale=0.01), bias=Constant(0), activation=Softmax())]
    
    # setup optimizer
    opt = GradientDescentMomentum(hyper_params.learning_rate_scale, 
                                  hyper_params.momentum, wdecay=0.0005,
                                  schedule=hyper_params.learning_rate_sched)
    
    # setup model
    if args.model_file:
        model = Model(layers=args.model_file)
    else:
        model = Model(layers=target_layers)
    
    return model, opt 
开发者ID:NervanaSystems,项目名称:ModelZoo,代码行数:43,代码来源:transfer_learning.py

示例2: _create_layer

# 需要导入模块: from neon import initializers [as 别名]
# 或者: from neon.initializers import Gaussian [as 别名]
def _create_layer(self):
        """ Build a network consistent with the DeepMind Nature paper. """
        _logger.debug("Output shape = %d" % self.output_shape)
        # create network
        init_norm = Gaussian(loc=0.0, scale=0.01)
        layers = []
        # The first hidden layer convolves 32 filters of 8x8 with stride 4 with the input image and applies a rectifier nonlinearity.
        layers.append(
                Conv((8, 8, 32),
                strides=4,
                init=init_norm,
                activation=Rectlin(),
                batch_norm=self.batch_norm))
        # The second hidden layer convolves 64 filters of 4x4 with stride 2, again followed by a rectifier nonlinearity.
        layers.append(
                Conv((4, 4, 64),
                strides=2,
                init=init_norm,
                activation=Rectlin(),
                batch_norm=self.batch_norm))
        # This is followed by a third convolutional layer that convolves 64 filters of 3x3 with stride 1 followed by a rectifier.
        layers.append(
                Conv((3, 3, 64),
                strides=1,
                init=init_norm,
                activation=Rectlin(),
                batch_norm=self.batch_norm))
        # The final hidden layer is fully-connected and consists of 512 rectifier units.
        layers.append(
                Affine(
                    nout=512,
                    init=init_norm,
                    activation=Rectlin(),
                    batch_norm=self.batch_norm))
        # The output layer is a fully-connected linear layer with a single output for each valid action.
        layers.append(
                Affine(
                    nout= self.output_shape,
                    init = init_norm))
        return layers 
开发者ID:cowhi,项目名称:deepatari,代码行数:42,代码来源:dqnneon.py

示例3: main

# 需要导入模块: from neon import initializers [as 别名]
# 或者: from neon.initializers import Gaussian [as 别名]
def main():
    parser = get_parser()
    args = parser.parse_args()
    print('Args:', args)

    loggingLevel = logging.DEBUG if args.verbose else logging.INFO
    logging.basicConfig(level=loggingLevel, format='')

    ext = extension_from_parameters(args)

    loader = p1b3.DataLoader(feature_subsample=args.feature_subsample,
                             scaling=args.scaling,
                             drug_features=args.drug_features,
                             scramble=args.scramble,
                             min_logconc=args.min_logconc,
                             max_logconc=args.max_logconc,
                             subsample=args.subsample,
                             category_cutoffs=args.category_cutoffs)

    # initializer = Gaussian(loc=0.0, scale=0.01)
    initializer = GlorotUniform()
    activation = get_function(args.activation)()

    layers = []
    reshape = None

    if args.convolution and args.convolution[0]:
        reshape = (1, loader.input_dim, 1)
        layer_list = list(range(0, len(args.convolution), 3))
        for l, i in enumerate(layer_list):
            nb_filter = args.convolution[i]
            filter_len = args.convolution[i+1]
            stride = args.convolution[i+2]
            # print(nb_filter, filter_len, stride)
            # fshape: (height, width, num_filters).
            layers.append(Conv((1, filter_len, nb_filter), strides={'str_h':1, 'str_w':stride}, init=initializer, activation=activation))
            if args.pool:
                layers.append(Pooling((1, args.pool)))

    for layer in args.dense:
        if layer:
            layers.append(Affine(nout=layer, init=initializer, activation=activation))
        if args.drop:
            layers.append(Dropout(keep=(1-args.drop)))
    layers.append(Affine(nout=1, init=initializer, activation=neon.transforms.Identity()))

    model = Model(layers=layers)

    train_iter = ConcatDataIter(loader, ndata=args.train_samples, lshape=reshape, datatype=args.datatype)
    val_iter = ConcatDataIter(loader, partition='val', ndata=args.val_samples, lshape=reshape, datatype=args.datatype)

    cost = GeneralizedCost(get_function(args.loss)())
    optimizer = get_function(args.optimizer)()
    callbacks = Callbacks(model, eval_set=val_iter, **args.callback_args)

    model.fit(train_iter, optimizer=optimizer, num_epochs=args.epochs, cost=cost, callbacks=callbacks) 
开发者ID:ECP-CANDLE,项目名称:Benchmarks,代码行数:58,代码来源:p1b3_baseline_neon.py


注:本文中的neon.initializers.Gaussian方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。