当前位置: 首页>>代码示例>>Python>>正文


Python mxnet.symbol方法代码示例

本文整理汇总了Python中mxnet.symbol方法的典型用法代码示例。如果您正苦于以下问题:Python mxnet.symbol方法的具体用法?Python mxnet.symbol怎么用?Python mxnet.symbol使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mxnet的用法示例。


在下文中一共展示了mxnet.symbol方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_symbol_compose

# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import symbol [as 别名]
def test_symbol_compose():
    data = mx.symbol.Variable('data')
    net1 = mx.symbol.FullyConnected(data=data, name='fc1', num_hidden=10)
    net1 = mx.symbol.FullyConnected(data=net1, name='fc2', num_hidden=100)
    net1.list_arguments() == ['data',
                              'fc1_weight', 'fc1_bias',
                              'fc2_weight', 'fc2_bias']

    net2 = mx.symbol.FullyConnected(name='fc3', num_hidden=10)
    net2 = mx.symbol.Activation(data=net2, act_type='relu')
    net2 = mx.symbol.FullyConnected(data=net2, name='fc4', num_hidden=20)

    composed = net2(fc3_data=net1, name='composed')
    multi_out = mx.symbol.Group([composed, net1])
    assert len(multi_out.list_outputs()) == 2
    assert len(multi_out) == 2 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:18,代码来源:test_symbol.py

示例2: test_symbol_children

# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import symbol [as 别名]
def test_symbol_children():
    data = mx.symbol.Variable('data')
    oldfc = mx.symbol.FullyConnected(data=data, name='fc1', num_hidden=10)
    net1 = mx.symbol.FullyConnected(data=oldfc, name='fc2', num_hidden=100)

    assert net1.get_children().list_outputs() == ['fc1_output', 'fc2_weight', 'fc2_bias']
    assert len(net1.get_children()) == 3
    assert net1.get_children().get_children().list_outputs() == ['data', 'fc1_weight', 'fc1_bias']
    assert len(net1.get_children().get_children()) == 3
    assert net1.get_children()['fc2_weight'].list_arguments() == ['fc2_weight']
    assert net1.get_children()['fc2_weight'].get_children() is None

    data = mx.sym.Variable('data')
    sliced = mx.sym.SliceChannel(data, num_outputs=3, name='slice')
    concat = mx.sym.Concat(*list(sliced))

    assert concat.get_children().list_outputs() == \
        ['slice_output0', 'slice_output1', 'slice_output2']
    assert sliced.get_children().list_outputs() == ['data'] 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:21,代码来源:test_symbol.py

示例3: test_symbol_infer_shape_var

# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import symbol [as 别名]
def test_symbol_infer_shape_var():
    "Test specifying shape information when constructing a variable"
    shape = (2, 3)
    a = mx.symbol.Variable('a', shape=shape)
    b = mx.symbol.Variable('b')
    c = mx.symbol.elemwise_add(a, b)
    arg_shapes, out_shapes, aux_shapes = c.infer_shape()
    assert arg_shapes[0] == shape
    assert arg_shapes[1] == shape
    assert out_shapes[0] == shape

    overwrite_shape = (5, 6)
    arg_shapes, out_shapes, aux_shapes = c.infer_shape(a=overwrite_shape)
    assert arg_shapes[0] == overwrite_shape
    assert arg_shapes[1] == overwrite_shape
    assert out_shapes[0] == overwrite_shape 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:18,代码来源:test_symbol.py

示例4: test_zero_prop

# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import symbol [as 别名]
def test_zero_prop():
    data = mx.symbol.Variable('data')
    for i in range(10):
        data = data * data

    exe = data.simple_bind(ctx=mx.cpu(), data=(10, 3, 256, 256))
    big = int(re.search('Total (\d+) MB allocated', exe.debug_str()).group(1))

    exe = data.simple_bind(ctx=mx.cpu(), data=(10, 3, 256, 256), grad_req='null')
    small1 = int(re.search('Total (\d+) MB allocated', exe.debug_str()).group(1))

    data = mx.sym.stop_gradient(data)
    exe = data.simple_bind(ctx=mx.cpu(), data=(10, 3, 256, 256))
    small2 = int(re.search('Total (\d+) MB allocated', exe.debug_str()).group(1))

    assert big > small2
    assert small1 == small2 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:19,代码来源:test_symbol.py

示例5: predict

# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import symbol [as 别名]
def predict(self, X):
        assert self.is_fitted
        ys = []
        n = X.shape[0]
        batch_size = min(n, 2**13)
        mod = mx.mod.Module(symbol=self.output, label_names=None)
        for _ in range(2):
            eval_iter = self._make_train_iter(
                X[len(ys):, :], y=None, batch_size=batch_size, shuffle=False)
            mod.bind(
                data_shapes=eval_iter.provide_data,
                label_shapes=None,
                for_training=False,
                force_rebind=True,
            )
            mod.set_params(*self.mod_params)
            ys.extend(mod.predict(eval_iter).asnumpy())
            batch_size = n % batch_size
            if batch_size == 0:
                break
        assert len(ys) == n
        return self._invert_target(ys) 
开发者ID:pjankiewicz,项目名称:mercari-solution,代码行数:24,代码来源:mx_sparse.py

示例6: drop_layer_top

# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import symbol [as 别名]
def drop_layer_top(self, num_layers_to_drop=1):
        """
        Remove layers from output of model.

        :param int n: Number of layers to remove from model output.
        """
        network_symbol = self.symbol
        network = self._get_symbol_dict(network_symbol)

        self._assert_drop_layer_valid(num_layers_to_drop)
        self._assert_model_has_single_output(self._get_symbol_dict(network_symbol))

        layers_dropped = []
        last_layer = len(network[consts.NODES]) - 1
        for n in range(num_layers_to_drop):
            last_layer_inputs = self._get_names_of_inputs_to_layer(symbol_dict=network, node_idx=last_layer)
            self._assert_layer_drop_not_ambiguous(possible_layers_to_drop=last_layer_inputs, layer_drop_number=n)
            # There will only be one value in possible_layers_to_drop
            layers_dropped.append(network[consts.NODES][last_layer][consts.NAME])
            last_layer = last_layer_inputs[0]

        network_symbol = network_symbol.get_internals()[network[consts.NODES][last_layer][consts.NAME] + consts.OUTPUT]

        logging.info('{} deleted from model top'.format(', '.join(layers_dropped)))
        self.update_sym(network_symbol) 
开发者ID:amzn,项目名称:xfer,代码行数:27,代码来源:model_handler.py

示例7: __init__

# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import symbol [as 别名]
def __init__(self,
                 field_name: str,
                 numeric_latent_dim: int = 100,
                 numeric_hidden_layers: int = 1) -> None:
        super(NumericalFeaturizer, self).__init__(field_name, numeric_latent_dim)

        self.numeric_hidden_layers = int(numeric_hidden_layers)
        self.numeric_latent_dim = int(numeric_latent_dim)

        with mx.name.Prefix(self.prefix):
            self.symbol = self.input_symbol
            for _ in range(self.numeric_hidden_layers):
                symbol = mx.sym.FullyConnected(
                    data=self.symbol,
                    num_hidden=self.numeric_latent_dim
                )
                self.symbol = mx.symbol.Activation(data=symbol, act_type="relu") 
开发者ID:awslabs,项目名称:datawig,代码行数:19,代码来源:mxnet_input_symbols.py

示例8: __make_numerical_loss

# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import symbol [as 别名]
def __make_numerical_loss(latents: mx.symbol,
                              label_field_name: str) -> Tuple[Any, Any]:
        """
        Generate output symbol for univariate numeric loss

        :param latents:
        :param label_field_name:
        :return: mxnet symbols for predictions and loss
        """

        # generate prediction symbol
        pred = mx.sym.FullyConnected(
            data=latents,
            num_hidden=1,
            name="label_{}".format(label_field_name))

        target = mx.sym.Variable(label_field_name)

        # squared loss
        loss = mx.sym.sum((pred - target) ** 2.0)

        return pred, loss 
开发者ID:awslabs,项目名称:datawig,代码行数:24,代码来源:imputer.py

示例9: conv_act_layer

# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import symbol [as 别名]
def conv_act_layer(from_layer, name, num_filter, kernel=(1,1), pad=(0,0), \
    stride=(1,1), act_type="relu", use_batchnorm=False):
    """
    wrapper for a small Convolution group

    Parameters:
    ----------
    from_layer : mx.symbol
        continue on which layer
    name : str
        base name of the new layers
    num_filter : int
        how many filters to use in Convolution layer
    kernel : tuple (int, int)
        kernel size (h, w)
    pad : tuple (int, int)
        padding size (h, w)
    stride : tuple (int, int)
        stride size (h, w)
    act_type : str
        activation type, can be relu...
    use_batchnorm : bool
        whether to use batch normalization

    Returns:
    ----------
    (conv, relu) mx.Symbols
    """
    conv = mx.symbol.Convolution(data=from_layer, kernel=kernel, pad=pad, \
        stride=stride, num_filter=num_filter, name="{}_conv".format(name))
    if use_batchnorm:
        conv = mx.symbol.BatchNorm(data=conv, name="{}_bn".format(name))
    relu = mx.symbol.Activation(data=conv, act_type=act_type, \
        name="{}_{}".format(name, act_type))
    return relu 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:37,代码来源:common.py

示例10: legacy_conv_act_layer

# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import symbol [as 别名]
def legacy_conv_act_layer(from_layer, name, num_filter, kernel=(1,1), pad=(0,0), \
    stride=(1,1), act_type="relu", use_batchnorm=False):
    """
    wrapper for a small Convolution group

    Parameters:
    ----------
    from_layer : mx.symbol
        continue on which layer
    name : str
        base name of the new layers
    num_filter : int
        how many filters to use in Convolution layer
    kernel : tuple (int, int)
        kernel size (h, w)
    pad : tuple (int, int)
        padding size (h, w)
    stride : tuple (int, int)
        stride size (h, w)
    act_type : str
        activation type, can be relu...
    use_batchnorm : bool
        whether to use batch normalization

    Returns:
    ----------
    (conv, relu) mx.Symbols
    """
    assert not use_batchnorm, "batchnorm not yet supported"
    bias = mx.symbol.Variable(name="conv{}_bias".format(name),
        init=mx.init.Constant(0.0), attr={'__lr_mult__': '2.0'})
    conv = mx.symbol.Convolution(data=from_layer, bias=bias, kernel=kernel, pad=pad, \
        stride=stride, num_filter=num_filter, name="conv{}".format(name))
    relu = mx.symbol.Activation(data=conv, act_type=act_type, \
        name="{}{}".format(act_type, name))
    if use_batchnorm:
        relu = mx.symbol.BatchNorm(data=relu, name="bn{}".format(name))
    return conv, relu 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:40,代码来源:common.py

示例11: test_symbol_bool

# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import symbol [as 别名]
def test_symbol_bool():
    x = mx.symbol.Variable('x')
    assertRaises(NotImplementedForSymbol, bool, x) 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:5,代码来源:test_symbol.py

示例12: test_symbol_copy

# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import symbol [as 别名]
def test_symbol_copy():
    data = mx.symbol.Variable('data')
    data_2 = copy.deepcopy(data)
    data_3 = copy.copy(data)
    assert data.tojson() == data_2.tojson()
    assert data.tojson() == data_3.tojson() 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:8,代码来源:test_symbol.py

示例13: test_symbol_saveload

# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import symbol [as 别名]
def test_symbol_saveload():
    sym = models.mlp2()
    fname = 'tmp_sym.json'
    sym.save(fname)
    data2 = mx.symbol.load(fname)
    # save because of order
    assert sym.tojson() == data2.tojson()
    os.remove(fname) 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:10,代码来源:test_symbol.py

示例14: test_symbol_infer_type

# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import symbol [as 别名]
def test_symbol_infer_type():
    data = mx.symbol.Variable('data')
    f32data = mx.symbol.Cast(data=data, dtype='float32')
    fc1  = mx.symbol.FullyConnected(data = f32data, name='fc1', num_hidden=128)
    mlp  = mx.symbol.SoftmaxOutput(data = fc1, name = 'softmax')

    arg, out, aux = mlp.infer_type(data=np.float16)
    assert arg == [np.float16, np.float32, np.float32, np.float32]
    assert out == [np.float32]
    assert aux == [] 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:12,代码来源:test_symbol.py

示例15: test_symbol_infer_shape

# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import symbol [as 别名]
def test_symbol_infer_shape():
    num_hidden = 128
    num_dim    = 64
    num_sample = 10

    data = mx.symbol.Variable('data')
    prev = mx.symbol.Variable('prevstate')
    x2h  = mx.symbol.FullyConnected(data=data, name='x2h', num_hidden=num_hidden)
    h2h  = mx.symbol.FullyConnected(data=prev, name='h2h', num_hidden=num_hidden)

    out  = mx.symbol.Activation(data=mx.sym.elemwise_add(x2h, h2h), name='out', act_type='relu')

    # shape inference will fail because information is not available for h2h
    ret  = out.infer_shape(data=(num_sample, num_dim))
    assert ret == (None, None, None)

    arg, out_shapes, aux_shapes = out.infer_shape_partial(data=(num_sample, num_dim))
    arg_shapes = dict(zip(out.list_arguments(), arg))
    assert arg_shapes['data'] == (num_sample, num_dim)
    assert arg_shapes['x2h_weight'] == (num_hidden, num_dim)
    assert arg_shapes['h2h_weight'] == ()

    # now we can do full shape inference
    state_shape = out_shapes[0]
    arg, out_shapes, aux_shapes = out.infer_shape(data=(num_sample, num_dim), prevstate=state_shape)
    arg_shapes = dict(zip(out.list_arguments(), arg))
    assert arg_shapes['data'] == (num_sample, num_dim)
    assert arg_shapes['x2h_weight'] == (num_hidden, num_dim)
    assert arg_shapes['h2h_weight'] == (num_hidden, num_hidden) 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:31,代码来源:test_symbol.py


注:本文中的mxnet.symbol方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。