本文整理汇总了Python中mxnet.ndarray.transpose方法的典型用法代码示例。如果您正苦于以下问题:Python ndarray.transpose方法的具体用法?Python ndarray.transpose怎么用?Python ndarray.transpose使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mxnet.ndarray
的用法示例。
在下文中一共展示了ndarray.transpose方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: load_bin
# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import transpose [as 别名]
def load_bin(path, image_size):
try:
with open(path, 'rb') as f:
bins, issame_list = pickle.load(f) #py2
except UnicodeDecodeError as e:
with open(path, 'rb') as f:
bins, issame_list = pickle.load(f, encoding='bytes') #py3
data_list = []
for flip in [0,1]:
data = nd.empty((len(issame_list)*2, 3, image_size[0], image_size[1]))
data_list.append(data)
for i in range(len(issame_list)*2):
_bin = bins[i]
img = mx.image.imdecode(_bin)
if img.shape[1]!=image_size[0]:
img = mx.image.resize_short(img, image_size[0])
img = nd.transpose(img, axes=(2, 0, 1))
for flip in [0,1]:
if flip==1:
img = mx.ndarray.flip(data=img, axis=2)
data_list[flip][i][:] = img
if i%1000==0:
print('loading bin', i)
print(data_list[0].shape)
return (data_list, issame_list)
示例2: load_dataset
# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import transpose [as 别名]
def load_dataset(lfw_dir, image_size):
lfw_pairs = read_pairs(os.path.join(lfw_dir, 'pairs.txt'))
lfw_paths, issame_list = get_paths(lfw_dir, lfw_pairs, 'jpg')
lfw_data_list = []
for flip in [0,1]:
lfw_data = nd.empty((len(lfw_paths), 3, image_size[0], image_size[1]))
lfw_data_list.append(lfw_data)
i = 0
for path in lfw_paths:
with open(path, 'rb') as fin:
_bin = fin.read()
img = mx.image.imdecode(_bin)
img = nd.transpose(img, axes=(2, 0, 1))
for flip in [0,1]:
if flip==1:
img = mx.ndarray.flip(data=img, axis=2)
lfw_data_list[flip][i][:] = img
i+=1
if i%1000==0:
print('loading lfw', i)
print(lfw_data_list[0].shape)
print(lfw_data_list[1].shape)
return (lfw_data_list, issame_list)
示例3: load_bin
# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import transpose [as 别名]
def load_bin(path, image_size):
bins, issame_list = pickle.load(open(path, 'rb'))
data_list = []
for flip in [0,1]:
data = nd.empty((len(issame_list)*2, 3, image_size[0], image_size[1]))
data_list.append(data)
for i in xrange(len(issame_list)*2):
_bin = bins[i]
img = mx.image.imdecode(_bin)
if img.shape[1]!=image_size[0]:
img = mx.image.resize_short(img, image_size[0])
img = nd.transpose(img, axes=(2, 0, 1))
for flip in [0,1]:
if flip==1:
img = mx.ndarray.flip(data=img, axis=2)
data_list[flip][i][:] = img
if i%1000==0:
print('loading bin', i)
print(data_list[0].shape)
return (data_list, issame_list)
示例4: create_neg
# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import transpose [as 别名]
def create_neg(self, neg_head):
if neg_head:
def fn(heads, relations, tails, num_chunks, chunk_size, neg_sample_size):
hidden_dim = heads.shape[1]
heads = heads.reshape(num_chunks, neg_sample_size, hidden_dim)
heads = nd.transpose(heads, axes=(0, 2, 1))
tmp = (tails * relations).reshape(num_chunks, chunk_size, hidden_dim)
return nd.linalg_gemm2(tmp, heads)
return fn
else:
def fn(heads, relations, tails, num_chunks, chunk_size, neg_sample_size):
hidden_dim = heads.shape[1]
tails = tails.reshape(num_chunks, neg_sample_size, hidden_dim)
tails = nd.transpose(tails, axes=(0, 2, 1))
tmp = (heads * relations).reshape(num_chunks, chunk_size, hidden_dim)
return nd.linalg_gemm2(tmp, tails)
return fn
示例5: load_dataset_bin
# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import transpose [as 别名]
def load_dataset_bin(self):
name = 'lfw'
path = os.path.join(self.lfw_dir, name+".bin")
bins, issame_list = pickle.load(open(path, 'rb'))
data_list = []
for flip in [0,1]:
data = nd.empty((len(issame_list)*2, 3, self.image_size[0], self.image_size[1]))
data_list.append(data)
for i in xrange(len(issame_list)*2):
_bin = bins[i]
img = mx.image.imdecode(_bin)
img = nd.transpose(img, axes=(2, 0, 1))
for flip in [0,1]:
if flip==1:
img = mx.ndarray.flip(data=img, axis=2)
data_list[flip][i][:] = img
if i%1000==0:
print('loading bin', i)
print(data_list[0].shape)
return (data_list, issame_list)
示例6: load_bin
# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import transpose [as 别名]
def load_bin(path, image_size):
try:
with open(path, 'rb') as f:
bins, issame_list = pickle.load(f) # py2
except UnicodeDecodeError as e:
with open(path, 'rb') as f:
bins, issame_list = pickle.load(f, encoding='bytes') # py3
data_list = []
for flip in [0, 1]:
data = nd.empty((len(issame_list) * 2, 3, image_size[0], image_size[1]))
data_list.append(data)
for i in range(len(issame_list) * 2):
_bin = bins[i]
img = mx.image.imdecode(_bin)
if img.shape[1] != image_size[0]:
img = mx.image.resize_short(img, image_size[0])
img = nd.transpose(img, axes=(2, 0, 1))
for flip in [0, 1]:
if flip == 1:
img = mx.ndarray.flip(data=img, axis=2)
data_list[flip][i][:] = img
if i % 1000 == 0:
print('loading bin', i)
print(data_list[0].shape)
return (data_list, issame_list)
示例7: load_bin
# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import transpose [as 别名]
def load_bin(path, image_size):
bins, issame_list = pickle.load(open(path, 'rb'), encoding='bytes')
data_list = []
for flip in [0,1]:
data = nd.empty((len(issame_list)*2, 3, image_size[0], image_size[1]))
data_list.append(data)
for i in range(len(issame_list)*2):
_bin = bins[i]
img = mx.image.imdecode(_bin)
img = nd.transpose(img, axes=(2, 0, 1))
for flip in [0,1]:
if flip==1:
img = mx.ndarray.flip(data=img, axis=2)
data_list[flip][i][:] = img
if i%1000==0:
print('loading bin', i)
print(data_list[0].shape)
return (data_list, issame_list)
示例8: _rearrange
# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import transpose [as 别名]
def _rearrange(raw, F, upscale_factor):
# (N, C * r^2, H, W) -> (N, C, r^2, H, W)
splitted = F.reshape(raw, shape=(0, -4, -1, upscale_factor**2, 0, 0))
# (N, C, r^2, H, W) -> (N, C, r, r, H, W)
unflatten = F.reshape(splitted, shape=(0, 0, -4, upscale_factor, upscale_factor, 0, 0))
# (N, C, r, r, H, W) -> (N, C, H, r, W, r)
swapped = F.transpose(unflatten, axes=(0, 1, 4, 2, 5, 3))
# (N, C, H, r, W, r) -> (N, C, H*r, W*r)
return F.reshape(swapped, shape=(0, 0, -3, -3))
示例9: postprocess_data
# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import transpose [as 别名]
def postprocess_data(self, datum):
"""Final postprocessing step before image is loaded into the batch."""
return nd.transpose(datum, axes=(2, 0, 1))
示例10: next
# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import transpose [as 别名]
def next(self):
"""Returns the next batch of data."""
#print('next')
batch_size = self.batch_size
batch_data = nd.empty((batch_size,)+self.data_shape)
batch_label = nd.empty((batch_size,)+self.label_shape)
i = 0
#self.cutoff = random.randint(800,1280)
try:
while i < batch_size:
#print('N', i)
data, label = self.next_sample()
data = nd.array(data)
data = nd.transpose(data, axes=(2, 0, 1))
label = nd.array(label)
label = nd.transpose(label, axes=(2, 0, 1))
batch_data[i][:] = data
batch_label[i][:] = label
i += 1
except StopIteration:
if i<batch_size:
raise StopIteration
#return {self.data_name : batch_data,
# self.label_name : batch_label}
#print(batch_data.shape, batch_label.shape)
return mx.io.DataBatch([batch_data], [batch_label, self.weight_mask], batch_size - i)
示例11: batched_l2_dist
# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import transpose [as 别名]
def batched_l2_dist(a, b):
a_squared = nd.power(nd.norm(a, axis=-1), 2)
b_squared = nd.power(nd.norm(b, axis=-1), 2)
squared_res = nd.add(nd.linalg_gemm(
a, nd.transpose(b, axes=(0, 2, 1)), nd.broadcast_axes(nd.expand_dims(b_squared, axis=-2), axis=1, size=a.shape[1]), alpha=-2
), nd.expand_dims(a_squared, axis=-1))
res = nd.sqrt(nd.clip(squared_res, 1e-30, np.finfo(np.float32).max))
return res
示例12: load_dataset
# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import transpose [as 别名]
def load_dataset(self):
lfw_pairs = self.read_pairs(os.path.join(self.lfw_dir, 'pairs.txt'))
lfw_paths, issame_list = self.get_paths(self.lfw_dir, lfw_pairs, 'jpg')
lfw_data_list = []
for flip in [0,1]:
# lfw_data = nd.empty((len(lfw_paths), 3, image_size[0], image_size[1]))
lfw_data = nd.empty((len(lfw_paths), 1, 100, 100))
lfw_data_list.append(lfw_data)
i = 0
for path in lfw_paths:
with open(path, 'rb') as fin:
_bin = fin.read()
img = np.asarray(bytearray(_bin), dtype="uint8")
img = cv2.imdecode(img, 0) # (100, 100)
img = img.reshape((1, img.shape[0], img.shape[1])) # (1, 100, 100)
#img = nd.transpose(img, axes=(2, 0, 1)) # (1L, 100L, 100L)
img = mx.nd.array(img) # (1L, 100L, 100L)
for flip in [0,1]:
if flip==1:
img = mx.ndarray.flip(data=img, axis=2)
lfw_data_list[flip][i][:] = img
i+=1
if i%1000==0:
print('loading lfw', i)
print(lfw_data_list[0].shape)
print(lfw_data_list[1].shape)
return (lfw_data_list, issame_list)
示例13: predict
# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import transpose [as 别名]
def predict(self,img):
img = nd.array(img)
#print(img.shape)
img = nd.transpose(img, axes=(2, 0, 1)).astype('float32')
img = nd.expand_dims(img, axis=0)
#print(img.shape)
db = mx.io.DataBatch(data=(img,))
self.model.forward(db, is_train=False)
net_out = self.model.get_outputs()
embedding = net_out[0].asnumpy()
embedding = sklearn.preprocessing.normalize(embedding,axis=1)
return embedding
示例14: predict
# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import transpose [as 别名]
def predict(self, img):
img = nd.array(img)
img = nd.transpose(img, axes=(2, 0, 1)).astype('float32')
img = nd.expand_dims(img, axis=0)
# print(img.shape)
db = mx.io.DataBatch(data=(img,))
self.model.forward(db, is_train=False)
net_out = self.model.get_outputs()
embedding = net_out[0].asnumpy()
embedding = sklearn.preprocessing.normalize(embedding)
return embedding
示例15: predict
# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import transpose [as 别名]
def predict(self,img):
img = nd.array(img)
img = nd.transpose(img, axes=(2, 0, 1)).astype('float32')
img = nd.expand_dims(img, axis=0)
#print(img.shape)
db = mx.io.DataBatch(data=(img,))
self.model.forward(db, is_train=False)
net_out = self.model.get_outputs()
embedding = net_out[0].asnumpy()
embedding = sklearn.preprocessing.normalize(embedding)
return embedding