当前位置: 首页>>代码示例>>Python>>正文


Python ndarray.split方法代码示例

本文整理汇总了Python中mxnet.ndarray.split方法的典型用法代码示例。如果您正苦于以下问题:Python ndarray.split方法的具体用法?Python ndarray.split怎么用?Python ndarray.split使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mxnet.ndarray的用法示例。


在下文中一共展示了ndarray.split方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_out_grads

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import split [as 别名]
def test_out_grads():
    x = nd.ones((3, 5))
    dx = nd.zeros_like(x)
    mark_variables([x], [dx])
    da = None
    db = nd.array([1,2,3,4,5])
    dc = nd.array([5,4,3,2,1])

    with record():
        a, b, c = nd.split(x, axis=0, num_outputs=3, squeeze_axis=True)
        backward([a, b, c], [da, db, dc])

    assert (dx.asnumpy() == np.array(
        [[1,1,1,1,1],
         [1,2,3,4,5],
         [5,4,3,2,1]])).all() 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:18,代码来源:test_autograd.py

示例2: test_out_grads

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import split [as 别名]
def test_out_grads():
    x = nd.ones((3, 5))
    dx = nd.zeros_like(x)
    mark_variables([x], [dx])
    da = None
    db = nd.array([1,2,3,4,5])
    dc = nd.array([5,4,3,2,1])

    with train_section():
        a, b, c = nd.split(x, axis=0, num_outputs=3, squeeze_axis=True)
        backward([a, b, c], [da, db, dc])

    assert (dx.asnumpy() == np.array(
        [[1,1,1,1,1],
         [1,2,3,4,5],
         [5,4,3,2,1]])).all() 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:18,代码来源:test_contrib_autograd.py

示例3: split

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import split [as 别名]
def split(x, sizes_or_sections, dim):
    if isinstance(sizes_or_sections, list) and len(sizes_or_sections) == 1:
        assert len(x) == sizes_or_sections[0]
        return [x]

    if MX_VERSION.version[0] == 1 and MX_VERSION.version[1] >= 5:
        if isinstance(sizes_or_sections, (np.ndarray, list)):
            sizes_or_sections1 = tuple(np.cumsum(sizes_or_sections)[:-1])
        return nd.split_v2(x, sizes_or_sections1, axis=dim)

    if isinstance(sizes_or_sections, list) or isinstance(sizes_or_sections, np.ndarray):
        # Old MXNet doesn't support split with different section sizes.
        np_arr = x.asnumpy()
        indices = np.cumsum(sizes_or_sections)[:-1]
        res = np.split(np_arr, indices, axis=dim)
        return [tensor(arr, dtype=x.dtype) for arr in res]
    else:
        return nd.split(x, sizes_or_sections, axis=dim) 
开发者ID:dmlc,项目名称:dgl,代码行数:20,代码来源:tensor.py

示例4: inverse

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import split [as 别名]
def inverse(self, y):
        import mxnet.ndarray as F

        scale_sqr = self.scale * self.scale
        batch, y_channels, y_height, y_width = y.shape
        assert (y_channels % scale_sqr == 0)
        x_channels = y_channels // scale_sqr
        x_height = y_height * self.scale
        x_width = y_width * self.scale

        x = y.transpose(axes=(0, 2, 3, 1))
        x = x.reshape(batch, y_height, y_width, scale_sqr, x_channels)
        d3_split_seq = x.split(axis=3, num_outputs=(x.shape[3] // self.scale))
        d3_split_seq = [t.reshape(batch, y_height, x_width, x_channels) for t in d3_split_seq]
        x = F.stack(*d3_split_seq, axis=0)
        x = x.swapaxes(0, 1).transpose(axes=(0, 2, 1, 3, 4)).reshape(batch, x_height, x_width, x_channels)
        x = x.transpose(axes=(0, 3, 1, 2))
        return x 
开发者ID:osmr,项目名称:imgclsmob,代码行数:20,代码来源:irevnet.py

示例5: tensor_save_bgrimage

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import split [as 别名]
def tensor_save_bgrimage(tensor, filename, cuda=False):
    (b, g, r) = F.split(tensor, num_outputs=3, axis=0)
    tensor = F.concat(r, g, b, dim=0)
    tensor_save_rgbimage(tensor, filename, cuda) 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:6,代码来源:utils.py

示例6: subtract_imagenet_mean_batch

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import split [as 别名]
def subtract_imagenet_mean_batch(batch):
    """Subtract ImageNet mean pixel-wise from a BGR image."""
    batch = F.swapaxes(batch,0, 1)
    (r, g, b) = F.split(batch, num_outputs=3, axis=0)
    r = r - 123.680
    g = g - 116.779
    b = b - 103.939
    batch = F.concat(r, g, b, dim=0)
    batch = F.swapaxes(batch,0, 1)
    return batch 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:12,代码来源:utils.py

示例7: subtract_imagenet_mean_preprocess_batch

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import split [as 别名]
def subtract_imagenet_mean_preprocess_batch(batch):
    """Subtract ImageNet mean pixel-wise from a BGR image."""
    batch = F.swapaxes(batch,0, 1)
    (r, g, b) = F.split(batch, num_outputs=3, axis=0)
    r = r - 123.680
    g = g - 116.779
    b = b - 103.939
    batch = F.concat(b, g, r, dim=0)
    batch = F.swapaxes(batch,0, 1)
    return batch 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:12,代码来源:utils.py

示例8: add_imagenet_mean_batch

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import split [as 别名]
def add_imagenet_mean_batch(batch):
    batch = F.swapaxes(batch,0, 1)
    (b, g, r) = F.split(batch, num_outputs=3, axis=0)
    r = r + 123.680
    g = g + 116.779
    b = b + 103.939
    batch = F.concat(b, g, r, dim=0)
    batch = F.swapaxes(batch,0, 1)
    """
    batch = denormalizer(batch)
    """
    return batch 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:14,代码来源:utils.py

示例9: preprocess_batch

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import split [as 别名]
def preprocess_batch(batch):
    batch = F.swapaxes(batch, 0, 1)
    (r, g, b) = F.split(batch, num_outputs=3, axis=0)
    batch = F.concat(b, g, r, dim=0)
    batch = F.swapaxes(batch, 0, 1)
    return batch 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:8,代码来源:utils.py

示例10: edge_func

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import split [as 别名]
def edge_func(self, edges):
        real_head, img_head = nd.split(edges.src['emb'], num_outputs=2, axis=-1)
        real_tail, img_tail = nd.split(edges.dst['emb'], num_outputs=2, axis=-1)
        real_rel, img_rel = nd.split(edges.data['emb'], num_outputs=2, axis=-1)

        score = real_head * real_tail * real_rel \
                + img_head * img_tail * real_rel \
                + real_head * img_tail * img_rel \
                - img_head * real_tail * img_rel
        # TODO: check if there exists minus sign and if gamma should be used here(jin)
        return {'score': nd.sum(score, -1)} 
开发者ID:dmlc,项目名称:dgl,代码行数:13,代码来源:score_fun.py

示例11: create_neg

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import split [as 别名]
def create_neg(self, neg_head):
        if neg_head:
            def fn(heads, relations, tails, num_chunks, chunk_size, neg_sample_size):
                hidden_dim = heads.shape[1]
                emb_real, emb_img = nd.split(tails, num_outputs=2, axis=-1)
                rel_real, rel_img = nd.split(relations, num_outputs=2, axis=-1)
                real = emb_real * rel_real + emb_img * rel_img
                img = -emb_real * rel_img + emb_img * rel_real
                emb_complex = nd.concat(real, img, dim=-1)
                tmp = emb_complex.reshape(num_chunks, chunk_size, hidden_dim)
                heads = heads.reshape(num_chunks, neg_sample_size, hidden_dim)
                heads = nd.transpose(heads, axes=(0, 2, 1))
                return nd.linalg_gemm2(tmp, heads)
            return fn
        else:
            def fn(heads, relations, tails, num_chunks, chunk_size, neg_sample_size):
                hidden_dim = heads.shape[1]
                emb_real, emb_img = nd.split(heads, num_outputs=2, axis=-1)
                rel_real, rel_img = nd.split(relations, num_outputs=2, axis=-1)
                real = emb_real * rel_real - emb_img * rel_img
                img = emb_real * rel_img + emb_img * rel_real
                emb_complex = nd.concat(real, img, dim=-1)
                tmp = emb_complex.reshape(num_chunks, chunk_size, hidden_dim)

                tails = tails.reshape(num_chunks, neg_sample_size, hidden_dim)
                tails = nd.transpose(tails, axes=(0, 2, 1))
                return nd.linalg_gemm2(tmp, tails)
            return fn 
开发者ID:dmlc,项目名称:dgl,代码行数:30,代码来源:score_fun.py

示例12: hybrid_forward

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import split [as 别名]
def hybrid_forward(self, F, x):
        batch, x_channels, x_height, x_width = x.shape
        y_channels = x_channels * self.scale * self.scale
        assert (x_height % self.scale == 0)
        y_height = x_height // self.scale

        y = x.transpose(axes=(0, 2, 3, 1))
        d2_split_seq = y.split(axis=2, num_outputs=(y.shape[2] // self.scale))
        d2_split_seq = [t.reshape(batch, y_height, y_channels) for t in d2_split_seq]
        y = F.stack(*d2_split_seq, axis=1)
        y = y.transpose(axes=(0, 3, 2, 1))
        return y 
开发者ID:osmr,项目名称:imgclsmob,代码行数:14,代码来源:irevnet.py

示例13: _get_lstm_features

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import split [as 别名]
def _get_lstm_features(self, sentence):
        self.hidden = self.init_hidden()
        length = sentence.shape[0]
        embeds = self.word_embeds(sentence).reshape((length, 1, -1))
        lstm_out, self.hidden = self.lstm(embeds, self.hidden)
        lstm_out = lstm_out.reshape((length, self.hidden_dim))
        lstm_feats = self.hidden2tag(lstm_out)
        return nd.split(lstm_feats, num_outputs=length, axis=0, squeeze_axis=True) 
开发者ID:mlperf,项目名称:training_results_v0.6,代码行数:10,代码来源:lstm_crf.py


注:本文中的mxnet.ndarray.split方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。