当前位置: 首页>>代码示例>>Python>>正文


Python ndarray.log方法代码示例

本文整理汇总了Python中mxnet.ndarray.log方法的典型用法代码示例。如果您正苦于以下问题:Python ndarray.log方法的具体用法?Python ndarray.log怎么用?Python ndarray.log使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mxnet.ndarray的用法示例。


在下文中一共展示了ndarray.log方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: prepare_sequence

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import log [as 别名]
def prepare_sequence(seq, word2idx):
    return nd.array([word2idx[w] for w in seq])

# Compute log sum exp is numerically more stable than multiplying probabilities 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:6,代码来源:lstm_crf.py

示例2: log_sum_exp

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import log [as 别名]
def log_sum_exp(vec):
    max_score = nd.max(vec).asscalar()
    return nd.log(nd.sum(nd.exp(vec - max_score))) + max_score

# Model 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:7,代码来源:lstm_crf.py

示例3: _forward_alg

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import log [as 别名]
def _forward_alg(self, feats):
        # Do the forward algorithm to compute the partition function
        alphas = [[-10000.] * self.tagset_size]
        alphas[0][self.tag2idx[START_TAG]] = 0.
        alphas = nd.array(alphas)

        # Iterate through the sentence
        for feat in feats:
            alphas_t = []  # The forward variables at this timestep
            for next_tag in range(self.tagset_size):
                # broadcast the emission score: it is the same regardless of
                # the previous tag
                emit_score = feat[next_tag].reshape((1, -1))
                # the ith entry of trans_score is the score of transitioning to
                # next_tag from i
                trans_score = self.transitions.data()[next_tag].reshape((1, -1))
                # The ith entry of next_tag_var is the value for the
                # edge (i -> next_tag) before we do log-sum-exp
                next_tag_var = alphas + trans_score + emit_score
                # The forward variable for this tag is log-sum-exp of all the
                # scores.
                alphas_t.append(log_sum_exp(next_tag_var))
            alphas = nd.concat(*alphas_t, dim=0).reshape((1, -1))
        terminal_var = alphas + self.transitions.data()[self.tag2idx[STOP_TAG]]
        alpha = log_sum_exp(terminal_var)
        return alpha 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:28,代码来源:lstm_crf.py

示例4: _viterbi_decode

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import log [as 别名]
def _viterbi_decode(self, feats):
        backpointers = []

        # Initialize the viterbi variables in log space
        vvars = nd.full((1, self.tagset_size), -10000.)
        vvars[0, self.tag2idx[START_TAG]] = 0

        for feat in feats:
            bptrs_t = []  # holds the backpointers for this step
            viterbivars_t = []  # holds the viterbi variables for this step

            for next_tag in range(self.tagset_size):
                # next_tag_var[i] holds the viterbi variable for tag i at the
                # previous step, plus the score of transitioning
                # from tag i to next_tag.
                # We don't include the emission scores here because the max
                # does not depend on them (we add them in below)
                next_tag_var = vvars + self.transitions.data()[next_tag]
                best_tag_id = argmax(next_tag_var)
                bptrs_t.append(best_tag_id)
                viterbivars_t.append(next_tag_var[0, best_tag_id])
            # Now add in the emission scores, and assign vvars to the set
            # of viterbi variables we just computed
            vvars = (nd.concat(*viterbivars_t, dim=0) + feat).reshape((1, -1))
            backpointers.append(bptrs_t)

        # Transition to STOP_TAG
        terminal_var = vvars + self.transitions.data()[self.tag2idx[STOP_TAG]]
        best_tag_id = argmax(terminal_var)
        path_score = terminal_var[0, best_tag_id]

        # Follow the back pointers to decode the best path.
        best_path = [best_tag_id]
        for bptrs_t in reversed(backpointers):
            best_tag_id = bptrs_t[best_tag_id]
            best_path.append(best_tag_id)
        # Pop off the start tag (we dont want to return that to the caller)
        start = best_path.pop()
        assert start == self.tag2idx[START_TAG]  # Sanity check
        best_path.reverse()
        return path_score, best_path 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:43,代码来源:lstm_crf.py

示例5: get_rmse_log

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import log [as 别名]
def get_rmse_log(net, X_train, y_train):
    """Gets root mse between the logarithms of the prediction and the truth."""
    num_train = X_train.shape[0]
    clipped_preds = nd.clip(net(X_train), 1, float('inf'))
    return np.sqrt(2 * nd.sum(square_loss(
        nd.log(clipped_preds), nd.log(y_train))).asscalar() / num_train) 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:8,代码来源:kaggle_k_fold_cross_validation.py

示例6: logsigmoid

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import log [as 别名]
def logsigmoid(val):
    max_elem = nd.maximum(0., -val)
    z = nd.exp(-max_elem) + nd.exp(-val - max_elem)
    return -(max_elem + nd.log(z)) 
开发者ID:dmlc,项目名称:dgl,代码行数:6,代码来源:tensor_models.py

示例7: log_gaussian

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import log [as 别名]
def log_gaussian(x, mean, sigma):
    return -0.5 * np.log(2.0 * np.pi) - nd.log(sigma) - (x - mean) ** 2 / (2 * sigma ** 2) 
开发者ID:amzn,项目名称:xfer,代码行数:4,代码来源:utils.py

示例8: softplus

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import log [as 别名]
def softplus(x):
    return nd.log(1. + nd.exp(x)) 
开发者ID:amzn,项目名称:xfer,代码行数:4,代码来源:utils.py

示例9: softplus_inv

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import log [as 别名]
def softplus_inv(x):
    return nd.log(nd.exp(x) - 1.) 
开发者ID:amzn,项目名称:xfer,代码行数:4,代码来源:utils.py

示例10: softplus_inv_numpy

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import log [as 别名]
def softplus_inv_numpy(x):
    return np.log(np.exp(x) - 1.) 
开发者ID:amzn,项目名称:xfer,代码行数:4,代码来源:utils.py

示例11: KL

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import log [as 别名]
def KL(self, other_prob):
        if not self.is_conjugate(other_prob):
            raise ValueError("KL cannot be computed in closed form.")

        if (not len(self.shapes) == len(other_prob.shapes)) or \
                (not np.all(np.array([s == o for s, o in zip(self.shapes, other_prob.shapes)]))):
            raise ValueError("KL cannot be computed: The 2 distributions have different support")

        raw_params_ext_var_posterior = self._replicate_shared_parameters()
        sigmas_var_posterior = transform_rhos(raw_params_ext_var_posterior[RHO])
        raw_params_ext_prior = other_prob._replicate_shared_parameters()

        out = 0.0
        for ii in range(len(self.shapes)):
            means_p = raw_params_ext_prior[MEAN][ii]
            var_p = raw_params_ext_prior["sigma"][ii] ** 2
            means_q = raw_params_ext_var_posterior[MEAN][ii]
            var_q = sigmas_var_posterior[ii] ** 2
            inc_means = (means_q - means_p)
            prec_p = 1.0 / var_p
            temp = 0.5 * (var_q*prec_p + ((inc_means ** 2) * prec_p) - 1.0 + nd.log(var_p) - nd.log(var_q))
            if temp.shape == (1, 1):
                # If parameters are shared, multiply by the number of variables
                temp = temp * (self.shapes[ii][0] * self.shapes[ii][1])
            out = out + nd.sum(temp)
        return out 
开发者ID:amzn,项目名称:xfer,代码行数:28,代码来源:var.py

示例12: log_sum_exp

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import log [as 别名]
def log_sum_exp(vec):
    max_score = nd.max(vec).asscalar()
    return nd.log(nd.sum(nd.exp(vec - max_score))) + max_score 
开发者ID:fierceX,项目名称:NER_BiLSTM_CRF_Chinese,代码行数:5,代码来源:model.py

示例13: _forward_alg

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import log [as 别名]
def _forward_alg(self, feats):
        # Do the forward algorithm to compute the partition function
        alphas = [[-10000.] * self.tagset_size]
        alphas[0][self.tag2idx[START_TAG]] = 0.
        alphas = nd.array(alphas)

        # Iterate through the sentence
        for feat in feats:
            alphas_t = []  # The forward variables at this timestep
            for next_tag in range(self.tagset_size):
                # broadcast the emission score: it is the same regardless of
                # the previous tag
                emit_score = feat[next_tag].reshape((1, -1))
                # the ith entry of trans_score is the score of transitioning to
                # next_tag from i
                trans_score = self.transitions[next_tag].reshape((1, -1))
                # The ith entry of next_tag_var is the value for the
                # edge (i -> next_tag) before we do log-sum-exp
                next_tag_var = alphas + trans_score + emit_score
                # The forward variable for this tag is log-sum-exp of all the
                # scores.
                alphas_t.append(log_sum_exp(next_tag_var))
            alphas = nd.concat(*alphas_t, dim=0).reshape((1, -1))
        terminal_var = alphas + self.transitions[self.tag2idx[STOP_TAG]]
        alpha = log_sum_exp(terminal_var)
        return alpha 
开发者ID:mahyarnajibi,项目名称:SNIPER-mxnet,代码行数:28,代码来源:lstm_crf.py

示例14: _viterbi_decode

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import log [as 别名]
def _viterbi_decode(self, feats):
        backpointers = []

        # Initialize the viterbi variables in log space
        vvars = nd.full((1, self.tagset_size), -10000.)
        vvars[0, self.tag2idx[START_TAG]] = 0

        for feat in feats:
            bptrs_t = []  # holds the backpointers for this step
            viterbivars_t = []  # holds the viterbi variables for this step

            for next_tag in range(self.tagset_size):
                # next_tag_var[i] holds the viterbi variable for tag i at the
                # previous step, plus the score of transitioning
                # from tag i to next_tag.
                # We don't include the emission scores here because the max
                # does not depend on them (we add them in below)
                next_tag_var = vvars + self.transitions[next_tag]
                best_tag_id = argmax(next_tag_var)
                bptrs_t.append(best_tag_id)
                viterbivars_t.append(next_tag_var[0, best_tag_id])
            # Now add in the emission scores, and assign vvars to the set
            # of viterbi variables we just computed
            vvars = (nd.concat(*viterbivars_t, dim=0) + feat).reshape((1, -1))
            backpointers.append(bptrs_t)

        # Transition to STOP_TAG
        terminal_var = vvars + self.transitions[self.tag2idx[STOP_TAG]]
        best_tag_id = argmax(terminal_var)
        path_score = terminal_var[0, best_tag_id]

        # Follow the back pointers to decode the best path.
        best_path = [best_tag_id]
        for bptrs_t in reversed(backpointers):
            best_tag_id = bptrs_t[best_tag_id]
            best_path.append(best_tag_id)
        # Pop off the start tag (we dont want to return that to the caller)
        start = best_path.pop()
        assert start == self.tag2idx[START_TAG]  # Sanity check
        best_path.reverse()
        return path_score, best_path 
开发者ID:mahyarnajibi,项目名称:SNIPER-mxnet,代码行数:43,代码来源:lstm_crf.py


注:本文中的mxnet.ndarray.log方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。