本文整理汇总了Python中mxnet.ndarray.load方法的典型用法代码示例。如果您正苦于以下问题:Python ndarray.load方法的具体用法?Python ndarray.load怎么用?Python ndarray.load使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mxnet.ndarray
的用法示例。
在下文中一共展示了ndarray.load方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: load_params
# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import load [as 别名]
def load_params(dir_path="", epoch=None, name=""):
prefix = os.path.join(dir_path, name)
_, param_loading_path, _ = get_saving_path(prefix, epoch)
while not os.path.isfile(param_loading_path):
logging.info("in load_param, %s Not Found!" % param_loading_path)
time.sleep(60)
save_dict = nd.load(param_loading_path)
arg_params = {}
aux_params = {}
for k, v in save_dict.items():
tp, name = k.split(':', 1)
if tp == 'arg':
arg_params[name] = v
if tp == 'aux':
aux_params[name] = v
return arg_params, aux_params, param_loading_path
示例2: load_misc
# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import load [as 别名]
def load_misc(dir_path="", epoch=None, name=""):
prefix = os.path.join(dir_path, name)
_, _, misc_saving_path = get_saving_path(prefix, epoch)
with open(misc_saving_path, 'r') as fp:
misc = json.load(fp)
return misc
示例3: load_npz
# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import load [as 别名]
def load_npz(path):
with numpy.load(path) as data:
ret = {k: data[k] for k in data.keys()}
return ret
示例4: _try_load_parameters
# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import load [as 别名]
def _try_load_parameters(self, filename=None, model=None, ctx=None, allow_missing=False,
ignore_extra=False):
def getblock(parent, name):
if len(name) == 1:
if name[0].isnumeric():
return parent[int(name[0])]
else:
return getattr(parent, name[0])
else:
if name[0].isnumeric():
return getblock(parent[int(name[0])], name[1:])
else:
return getblock(getattr(parent, name[0]), name[1:])
if filename is not None:
loaded = ndarray.load(filename)
else:
loaded = {k: v.data() for k, v in model._collect_params_with_prefix().items()}
params = self._collect_params_with_prefix()
if not loaded and not params:
return
if not any('.' in i for i in loaded.keys()):
# legacy loading
del loaded
self.collect_params().load(
filename, ctx, allow_missing, ignore_extra, self.prefix)
return
for name in loaded:
if name in params:
if params[name].shape != loaded[name].shape:
continue
params[name]._load_init(loaded[name], ctx)
示例5: _load_from_pytorch
# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import load [as 别名]
def _load_from_pytorch(self, filename, ctx=None):
import torch
from mxnet import nd
loaded = torch.load(filename)
params = self._collect_params_with_prefix()
new_params = {}
for name in loaded:
if 'bn' in name or 'batchnorm' in name or '.downsample.1.' in name:
if 'weight' in name:
mxnet_name = name.replace('weight', 'gamma')
elif 'bias' in name:
mxnet_name = name.replace('bias', 'beta')
else:
mxnet_name = name
new_params[mxnet_name] = nd.array(loaded[name].cpu().data.numpy())
else:
new_params[name] = nd.array(loaded[name].cpu().data.numpy())
for name in new_params:
if name not in params:
print('==={}==='.format(name))
raise Exception
if name in params:
params[name]._load_init(new_params[name], ctx=ctx)
示例6: resnet18_v1b_89
# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import load [as 别名]
def resnet18_v1b_89(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs):
"""Constructs a ResNetV1b-18_2.6x model. Uses resnet18_v1b construction from resnetv1b.py
Parameters
----------
pretrained : bool or str
Boolean value controls whether to load the default pretrained weights for model.
String value represents the hashtag for a certain version of pretrained weights.
root : str, default '~/.mxnet/models'
Location for keeping the model parameters.
ctx : Context, default CPU
The context in which to load the pretrained weights.
"""
model = ResNetV1b(BasicBlockV1b, [2, 2, 2, 2], name_prefix='resnetv1b_', **kwargs)
dirname = os.path.dirname(__file__)
json_filename = os.path.join(dirname, 'resnet%d_v%db_%.1fx' % (18, 1, 2.6) + ".json")
with open(json_filename, "r") as jsonFile:
params_shapes = json.load(jsonFile)
if pretrained:
from ..model_store import get_model_file
params_file = get_model_file('resnet%d_v%db_%.1fx' % (18, 1, 2.6), tag=pretrained,
root=root)
prune_gluon_block(model, model.name, params_shapes, params=ndarray.load(params_file),
pretrained=True, ctx=ctx)
else:
prune_gluon_block(model, model.name, params_shapes, params=None, pretrained=False, ctx=ctx)
if pretrained:
from ...data import ImageNet1kAttr
attrib = ImageNet1kAttr()
model.synset = attrib.synset
model.classes = attrib.classes
model.classes_long = attrib.classes_long
return model
示例7: resnet50_v1d_86
# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import load [as 别名]
def resnet50_v1d_86(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs):
"""Constructs a ResNetV1d-50_1.8x model. Uses resnet50_v1d construction from resnetv1b.py
Parameters
----------
pretrained : bool or str
Boolean value controls whether to load the default pretrained weights for model.
String value represents the hashtag for a certain version of pretrained weights.
root : str, default '~/.mxnet/models'
Location for keeping the model parameters.
ctx : Context, default CPU
The context in which to load the pretrained weights.
"""
model = ResNetV1b(BottleneckV1b, [3, 4, 6, 3], deep_stem=True, avg_down=True,
name_prefix='resnetv1d_', **kwargs)
dirname = os.path.dirname(__file__)
json_filename = os.path.join(dirname, 'resnet%d_v%dd_%.1fx' % (50, 1, 1.8) + ".json")
with open(json_filename, "r") as jsonFile:
params_shapes = json.load(jsonFile)
if pretrained:
from ..model_store import get_model_file
params_file = get_model_file('resnet%d_v%dd_%.1fx' % (50, 1, 1.8), tag=pretrained,
root=root)
prune_gluon_block(model, model.name, params_shapes, params=ndarray.load(params_file),
pretrained=True, ctx=ctx)
else:
prune_gluon_block(model, model.name, params_shapes, params=None, pretrained=False, ctx=ctx)
if pretrained:
from ...data import ImageNet1kAttr
attrib = ImageNet1kAttr()
model.synset = attrib.synset
model.classes = attrib.classes
model.classes_long = attrib.classes_long
return model
示例8: resnet50_v1d_48
# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import load [as 别名]
def resnet50_v1d_48(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs):
"""Constructs a ResNetV1d-50_3.6x model. Uses resnet50_v1d construction from resnetv1b.py
Parameters
----------
pretrained : bool or str
Boolean value controls whether to load the default pretrained weights for model.
String value represents the hashtag for a certain version of pretrained weights.
root : str, default '~/.mxnet/models'
Location for keeping the model parameters.
ctx : Context, default CPU
The context in which to load the pretrained weights.
"""
model = ResNetV1b(BottleneckV1b, [3, 4, 6, 3], deep_stem=True, avg_down=True,
name_prefix='resnetv1d_', **kwargs)
dirname = os.path.dirname(__file__)
json_filename = os.path.join(dirname, 'resnet%d_v%dd_%.1fx' % (50, 1, 3.6) + ".json")
with open(json_filename, "r") as jsonFile:
params_shapes = json.load(jsonFile)
if pretrained:
from ..model_store import get_model_file
params_file = get_model_file('resnet%d_v%dd_%.1fx' % (50, 1, 3.6), tag=pretrained,
root=root)
prune_gluon_block(model, model.name, params_shapes, params=ndarray.load(params_file),
pretrained=True, ctx=ctx)
else:
prune_gluon_block(model, model.name, params_shapes, params=None, pretrained=False, ctx=ctx)
if pretrained:
from ...data import ImageNet1kAttr
attrib = ImageNet1kAttr()
model.synset = attrib.synset
model.classes = attrib.classes
model.classes_long = attrib.classes_long
return model
示例9: resnet50_v1d_11
# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import load [as 别名]
def resnet50_v1d_11(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs):
"""Constructs a ResNetV1d-50_8.8x model. Uses resnet50_v1d construction from resnetv1b.py
Parameters
----------
pretrained : bool or str
Boolean value controls whether to load the default pretrained weights for model.
String value represents the hashtag for a certain version of pretrained weights.
root : str, default '~/.mxnet/models'
Location for keeping the model parameters.
ctx : Context, default CPU
The context in which to load the pretrained weights.
"""
model = ResNetV1b(BottleneckV1b, [3, 4, 6, 3], deep_stem=True, avg_down=True,
name_prefix='resnetv1d_', **kwargs)
dirname = os.path.dirname(__file__)
json_filename = os.path.join(dirname, 'resnet%d_v%dd_%.1fx' % (50, 1, 8.8) + ".json")
with open(json_filename, "r") as jsonFile:
params_shapes = json.load(jsonFile)
if pretrained:
from ..model_store import get_model_file
params_file = get_model_file('resnet%d_v%dd_%.1fx' % (50, 1, 8.8), tag=pretrained,
root=root)
prune_gluon_block(model, model.name, params_shapes, params=ndarray.load(params_file),
pretrained=True, ctx=ctx)
else:
prune_gluon_block(model, model.name, params_shapes, params=None, pretrained=False, ctx=ctx)
if pretrained:
from ...data import ImageNet1kAttr
attrib = ImageNet1kAttr()
model.synset = attrib.synset
model.classes = attrib.classes
model.classes_long = attrib.classes_long
return model
示例10: resnet101_v1d_76
# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import load [as 别名]
def resnet101_v1d_76(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs):
"""Constructs a ResNetV1d-101_1.9x model. Uses resnet101_v1d construction from resnetv1b.py
Parameters
----------
pretrained : bool or str
Boolean value controls whether to load the default pretrained weights for model.
String value represents the hashtag for a certain version of pretrained weights.
root : str, default '~/.mxnet/models'
Location for keeping the model parameters.
ctx : Context, default CPU
The context in which to load the pretrained weights.
"""
model = ResNetV1b(BottleneckV1b, [3, 4, 23, 3], deep_stem=True, avg_down=True,
name_prefix='resnetv1d_', **kwargs)
dirname = os.path.dirname(__file__)
json_filename = os.path.join(dirname, 'resnet%d_v%dd_%.1fx' % (101, 1, 1.9) + ".json")
with open(json_filename, "r") as jsonFile:
params_shapes = json.load(jsonFile)
if pretrained:
from ..model_store import get_model_file
params_file = get_model_file('resnet%d_v%dd_%.1fx' % (101, 1, 1.9), tag=pretrained,
root=root)
prune_gluon_block(model, model.name, params_shapes, params=ndarray.load(params_file),
pretrained=True, ctx=ctx)
else:
prune_gluon_block(model, model.name, params_shapes, params=None, pretrained=False, ctx=ctx)
if pretrained:
from ...data import ImageNet1kAttr
attrib = ImageNet1kAttr()
model.synset = attrib.synset
model.classes = attrib.classes
model.classes_long = attrib.classes_long
return model
示例11: resnet101_v1d_73
# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import load [as 别名]
def resnet101_v1d_73(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs):
"""Constructs a ResNetV1d-101_2.2x model. Uses resnet101_v1d construction from resnetv1b.py
Parameters
----------
pretrained : bool or str
Boolean value controls whether to load the default pretrained weights for model.
String value represents the hashtag for a certain version of pretrained weights.
root : str, default '~/.mxnet/models'
Location for keeping the model parameters.
ctx : Context, default CPU
The context in which to load the pretrained weights.
"""
model = ResNetV1b(BottleneckV1b, [3, 4, 23, 3], deep_stem=True, avg_down=True,
name_prefix='resnetv1d_', **kwargs)
dirname = os.path.dirname(__file__)
json_filename = os.path.join(dirname, 'resnet%d_v%dd_%.1fx' % (101, 1, 2.2) + ".json")
with open(json_filename, "r") as jsonFile:
params_shapes = json.load(jsonFile)
if pretrained:
from ..model_store import get_model_file
params_file = get_model_file('resnet%d_v%dd_%.1fx' % (101, 1, 2.2), tag=pretrained,
root=root)
prune_gluon_block(model, model.name, params_shapes, params=ndarray.load(params_file),
pretrained=True, ctx=ctx)
else:
prune_gluon_block(model, model.name, params_shapes, params=None, pretrained=False, ctx=ctx)
if pretrained:
from ...data import ImageNet1kAttr
attrib = ImageNet1kAttr()
model.synset = attrib.synset
model.classes = attrib.classes
model.classes_long = attrib.classes_long
return model
示例12: resnet50_v1d_37
# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import load [as 别名]
def resnet50_v1d_37(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs):
"""Constructs a ResNetV1d-50_5.9x model. Uses resnet50_v1d construction from resnetv1b.py
Parameters
----------
pretrained : bool or str
Boolean value controls whether to load the default pretrained weights for model.
String value represents the hashtag for a certain version of pretrained weights.
root : str, default '~/.mxnet/models'
Location for keeping the model parameters.
ctx : Context, default CPU
The context in which to load the pretrained weights.
"""
model = ResNetV1b(BottleneckV1b, [3, 4, 6, 3], deep_stem=True, avg_down=True,
name_prefix='resnetv1d_', **kwargs)
dirname = os.path.dirname(__file__)
json_filename = os.path.join(dirname, 'resnet%d_v%dd_%.1fx' % (50, 1, 5.9) + ".json")
with open(json_filename, "r") as jsonFile:
params_shapes = json.load(jsonFile)
if pretrained:
from ..model_store import get_model_file
params_file = get_model_file('resnet%d_v%dd_%.1fx' % (50, 1, 5.9), tag=pretrained,
root=root)
prune_gluon_block(model, model.name, params_shapes, params=ndarray.load(params_file),
pretrained=True, ctx=ctx)
else:
prune_gluon_block(model, model.name, params_shapes, params=None, pretrained=False, ctx=ctx)
if pretrained:
from ...data import ImageNet1kAttr
attrib = ImageNet1kAttr()
model.synset = attrib.synset
model.classes = attrib.classes
model.classes_long = attrib.classes_long
return model
示例13: get_alphapose
# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import load [as 别名]
def get_alphapose(name, dataset, num_joints, pretrained=False,
pretrained_base=False, ctx=mx.cpu(),
norm_layer=nn.BatchNorm, norm_kwargs=None,
root=os.path.join('~', '.mxnet', 'models'), **kwargs):
r"""Utility function to return AlphaPose networks.
Parameters
----------
name : str
Model name.
dataset : str
The name of dataset.
pretrained : bool or str
Boolean value controls whether to load the default pretrained weights for model.
String value represents the hashtag for a certain version of pretrained weights.
ctx : mxnet.Context
Context such as mx.cpu(), mx.gpu(0).
root : str
Model weights storing path.
Returns
-------
mxnet.gluon.HybridBlock
The AlphaPose network.
"""
if norm_kwargs is None:
norm_kwargs = {}
preact = FastSEResNet(name, norm_layer=norm_layer, **norm_kwargs)
if not pretrained and pretrained_base:
from gluoncv.model_zoo import get_model
base_network = get_model(name, pretrained=True, root=root)
_try_load_parameters(self=base_network, model=base_network)
net = AlphaPose(preact, num_joints, **kwargs)
if pretrained:
from gluoncv.model_zoo.model_store import get_model_file
full_name = '_'.join(('alpha_pose', name, dataset))
net.load_parameters(get_model_file(full_name, tag=pretrained, root=root))
else:
import warnings
with warnings.catch_warnings(record=True):
warnings.simplefilter("always")
net.collect_params().initialize()
net.collect_params().reset_ctx(ctx)
return net