当前位置: 首页>>代码示例>>Python>>正文


Python ndarray.array方法代码示例

本文整理汇总了Python中mxnet.ndarray.array方法的典型用法代码示例。如果您正苦于以下问题:Python ndarray.array方法的具体用法?Python ndarray.array怎么用?Python ndarray.array使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mxnet.ndarray的用法示例。


在下文中一共展示了ndarray.array方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: draw

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import array [as 别名]
def draw(self, true_classes):
        """Draw samples from log uniform distribution and returns sampled candidates,
        expected count for true classes and sampled classes."""
        range_max = self.range_max
        num_sampled = self.num_sampled
        ctx = true_classes.context
        log_range = math.log(range_max + 1)
        num_tries = 0
        true_classes = true_classes.reshape((-1,))
        sampled_classes, num_tries = self.sampler.sample_unique(num_sampled)

        true_cls = true_classes.as_in_context(ctx).astype('float64')
        prob_true = ((true_cls + 2.0) / (true_cls + 1.0)).log() / log_range
        count_true = self._prob_helper(num_tries, num_sampled, prob_true)

        sampled_classes = ndarray.array(sampled_classes, ctx=ctx, dtype='int64')
        sampled_cls_fp64 = sampled_classes.astype('float64')
        prob_sampled = ((sampled_cls_fp64 + 2.0) / (sampled_cls_fp64 + 1.0)).log() / log_range
        count_sampled = self._prob_helper(num_tries, num_sampled, prob_sampled)
        return [sampled_classes, count_true, count_sampled] 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:22,代码来源:sampler.py

示例2: reset

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import array [as 别名]
def reset(self):
        """Resets the iterator to the beginning of the data."""
        self.curr_idx = 0
        #shuffle data in each bucket
        random.shuffle(self.idx)
        for i, buck in enumerate(self.sentences):
            self.indices[i], self.sentences[i], self.characters[i], self.label[i] = shuffle(self.indices[i],
                                                                                            self.sentences[i],
                                                                                            self.characters[i],
                                                                                            self.label[i])

        self.ndindex = []
        self.ndsent = []
        self.ndchar = []
        self.ndlabel = []

        #for each bucket of data
        for i, buck in enumerate(self.sentences):
            #append the lists with an array
            self.ndindex.append(ndarray.array(self.indices[i], dtype=self.dtype))
            self.ndsent.append(ndarray.array(self.sentences[i], dtype=self.dtype))
            self.ndchar.append(ndarray.array(self.characters[i], dtype=self.dtype))
            self.ndlabel.append(ndarray.array(self.label[i], dtype=self.dtype)) 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:25,代码来源:iterators.py

示例3: test_grad_with_stype

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import array [as 别名]
def test_grad_with_stype():
    def check_grad_with_stype(array_stype, grad_stype, expected_stype):
        x = mx.nd.zeros((1, 1), stype=array_stype)
        x.attach_grad(stype=grad_stype)
        # check grad attached
        assert x.grad.stype == expected_stype
        y = x.detach()
        # check array detached
        assert y.stype == array_stype

    stypes = ['default', 'csr', 'row_sparse']
    for stype in stypes:
        # check the default stype of the gradient (same as the array stype)
        check_grad_with_stype(stype, None, stype)
        for grad_stype in stypes:
            # check the stype of the gradient when provided
            check_grad_with_stype(stype, grad_stype, grad_stype) 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:19,代码来源:test_autograd.py

示例4: test_out_grads

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import array [as 别名]
def test_out_grads():
    x = nd.ones((3, 5))
    dx = nd.zeros_like(x)
    mark_variables([x], [dx])
    da = None
    db = nd.array([1,2,3,4,5])
    dc = nd.array([5,4,3,2,1])

    with train_section():
        a, b, c = nd.split(x, axis=0, num_outputs=3, squeeze_axis=True)
        backward([a, b, c], [da, db, dc])

    assert (dx.asnumpy() == np.array(
        [[1,1,1,1,1],
         [1,2,3,4,5],
         [5,4,3,2,1]])).all() 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:18,代码来源:test_contrib_autograd.py

示例5: next_sample

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import array [as 别名]
def next_sample(self):
      """Helper function for reading in next sample."""
      if self.cur >= len(self.seq):
        raise StopIteration
      idx = self.seq[self.cur]
      self.cur += 1
      uv_path = self.uv_file_list[idx]
      image_path = self.image_file_list[idx]
      uvmap = np.load(uv_path)
      img = cv2.imread(image_path)[:,:,::-1]#to rgb
      hlabel = uvmap
      #print(hlabel.shape)
      #hlabel = np.array(header.label).reshape( (self.output_label_size, self.output_label_size, self.num_classes) )
      hlabel /= self.input_img_size

      return img, hlabel 
开发者ID:deepinsight,项目名称:insightface,代码行数:18,代码来源:data.py

示例6: pairwise_dists

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import array [as 别名]
def pairwise_dists(self, embeddings):
      nd_embedding_list = []
      for i in xrange(self.ctx_num):
        nd_embedding = mx.nd.array(embeddings, mx.gpu(i))
        nd_embedding_list.append(nd_embedding)
      nd_pdists = []
      pdists = []
      for idx in xrange(embeddings.shape[0]):
        emb_idx = idx%self.ctx_num
        nd_embedding = nd_embedding_list[emb_idx]
        a_embedding = nd_embedding[idx]
        body = mx.nd.broadcast_sub(a_embedding, nd_embedding)
        body = body*body
        body = mx.nd.sum_axis(body, axis=1)
        nd_pdists.append(body)
        if len(nd_pdists)==self.ctx_num or idx==embeddings.shape[0]-1:
          for x in nd_pdists:
            pdists.append(x.asnumpy())
          nd_pdists = []
      return pdists 
开发者ID:deepinsight,项目名称:insightface,代码行数:22,代码来源:data.py

示例7: generate_anchors_fpn

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import array [as 别名]
def generate_anchors_fpn(cfg):
    """
    Generate anchor (reference) windows by enumerating aspect ratios X
    scales wrt a reference (0, 0, 15, 15) window.
    """
    RPN_FEAT_STRIDE = []
    for k in cfg:
      RPN_FEAT_STRIDE.append( int(k) )
    RPN_FEAT_STRIDE = sorted(RPN_FEAT_STRIDE, reverse=True)
    anchors = []
    for k in RPN_FEAT_STRIDE:
      v = cfg[str(k)]
      bs = v['BASE_SIZE']
      __ratios = np.array(v['RATIOS'])
      __scales = np.array(v['SCALES'])
      stride = int(k)
      #print('anchors_fpn', bs, __ratios, __scales, file=sys.stderr)
      r = generate_anchors(bs, __ratios, __scales, stride)
      #print('anchors_fpn', r.shape, file=sys.stderr)
      anchors.append(r)

    return anchors 
开发者ID:deepinsight,项目名称:insightface,代码行数:24,代码来源:face_detection.py

示例8: next_sample

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import array [as 别名]
def next_sample(self):
      """Helper function for reading in next sample."""
      if self.cur >= len(self.seq):
        raise StopIteration
      idx = self.seq[self.cur]
      self.cur += 1
      s = self.imgrec.read_idx(idx)
      header, img = recordio.unpack(s)
      img = mx.image.imdecode(img).asnumpy()
      hlabel = np.array(header.label).reshape( (self.num_classes,2) )
      if not config.label_xfirst:
        hlabel = hlabel[:,::-1] #convert to X/W first
      annot = {'scale': config.base_scale}

      #ul = np.array( (50000,50000), dtype=np.int32)
      #br = np.array( (0,0), dtype=np.int32)
      #for i in range(hlabel.shape[0]):
      #  h = int(hlabel[i][0])
      #  w = int(hlabel[i][1])
      #  key = np.array((h,w))
      #  ul = np.minimum(key, ul)
      #  br = np.maximum(key, br)

      return img, hlabel, annot 
开发者ID:deepinsight,项目名称:insightface,代码行数:26,代码来源:data.py

示例9: pad_packed_tensor

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import array [as 别名]
def pad_packed_tensor(input, lengths, value, l_min=None):
    old_shape = input.shape
    if isinstance(lengths, nd.NDArray):
        max_len = as_scalar(input.max())
    else:
        max_len = builtins.max(lengths)

    if l_min is not None:
        max_len = builtins.max(max_len, l_min)

    batch_size = len(lengths)
    ctx = input.context
    dtype = input.dtype
    x = nd.full((batch_size * max_len, *old_shape[1:]), value, ctx=ctx, dtype=dtype)
    index = []
    for i, l in enumerate(lengths):
        index.extend(range(i * max_len, i * max_len + l))
    index = nd.array(index, ctx=ctx)
    return scatter_row(x, index, input).reshape(batch_size, max_len, *old_shape[1:]) 
开发者ID:dmlc,项目名称:dgl,代码行数:21,代码来源:tensor.py

示例10: face_create_lib

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import array [as 别名]
def face_create_lib(args, npz_embs, npz_emb_len, embedding, item, fd, max_nums):
# 得到当前ID的总个数
    id_sum = npz_embs.shape[0]

    # 为新的人脸入库,创建一个新的文件夹
    new_lib_dir = os.path.join(args.outdir, '%08d' % id_sum)
    os.mkdir(new_lib_dir)

    # 为了统一,扩展一个维度
    embedding = np.expand_dims(embedding, axis=0)

    # 特征向量以及对应的ID图片的数目,都进行垂直拼接
    npz_embs = np.vstack((npz_embs, embedding.reshape(1, -1)))
    npz_emb_len = np.vstack((npz_emb_len, np.array([[1]])))

    new_img_path = os.path.join(new_lib_dir, '00000' + args.encoding)
    old_img_path = os.path.join(args.indir, item[1])

    fd.write(old_img_path + '\t' + new_img_path + '\t' + str(max_nums) + '\n\n')
    shutil.copyfile(old_img_path, new_img_path)

    if args.delete:
        os.remove(old_img_path)
    return npz_embs,npz_emb_len 
开发者ID:944284742,项目名称:1.FaceRecognition,代码行数:26,代码来源:faces_classer.py

示例11: SGD

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import array [as 别名]
def SGD(sym, data_inputs, X, Y, X_test, Y_test, total_iter_num,
        lr=None,
        lr_scheduler=None, prior_precision=1,
        out_grad_f=None,
        initializer=None,
        minibatch_size=100, dev=mx.gpu()):
    if out_grad_f is None:
        label_key = list(set(data_inputs.keys()) - set(['data']))[0]
    exe, params, params_grad, _ = get_executor(sym, dev, data_inputs, initializer)
    optimizer = mx.optimizer.create('sgd', learning_rate=lr,
                                    rescale_grad=X.shape[0] / minibatch_size,
                                    lr_scheduler=lr_scheduler,
                                    wd=prior_precision)
    updater = mx.optimizer.get_updater(optimizer)
    start = time.time()
    for i in range(total_iter_num):
        indices = numpy.random.randint(X.shape[0], size=minibatch_size)
        X_batch = X[indices]
        Y_batch = Y[indices]
        exe.arg_dict['data'][:] = X_batch
        if out_grad_f is None:
            exe.arg_dict[label_key][:] = Y_batch
            exe.forward(is_train=True)
            exe.backward()
        else:
            exe.forward(is_train=True)
            exe.backward(out_grad_f(exe.outputs, nd.array(Y_batch, ctx=dev)))
        for k in params:
            updater(k, params_grad[k], params[k])
        if (i + 1) % 500 == 0:
            end = time.time()
            print("Current Iter Num: %d" % (i + 1), "Time Spent: %f" % (end - start))
            sample_test_acc(exe, X=X_test, Y=Y_test, label_num=10, minibatch_size=100)
            start = time.time()
    return exe, params, params_grad 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:37,代码来源:algos.py

示例12: prepare_sequence

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import array [as 别名]
def prepare_sequence(seq, word2idx):
    return nd.array([word2idx[w] for w in seq])

# Compute log sum exp is numerically more stable than multiplying probabilities 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:6,代码来源:lstm_crf.py

示例13: _score_sentence

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import array [as 别名]
def _score_sentence(self, feats, tags):
        # Gives the score of a provided tag sequence
        score = nd.array([0])
        tags = nd.concat(nd.array([self.tag2idx[START_TAG]]), *tags, dim=0)
        for i, feat in enumerate(feats):
            score = score + \
                self.transitions.data()[to_scalar(tags[i+1]), to_scalar(tags[i])] + feat[to_scalar(tags[i+1])]
        score = score + self.transitions.data()[self.tag2idx[STOP_TAG],
                                         to_scalar(tags[int(tags.shape[0]-1)])]
        return score 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:12,代码来源:lstm_crf.py

示例14: calculate_avg_q

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import array [as 别名]
def calculate_avg_q(samples, qnet):
    total_q = 0.0
    for i in range(len(samples)):
        state = nd.array(samples[i:i + 1], ctx=qnet.ctx) / float(255.0)
        total_q += qnet.forward(is_train=False, data=state)[0].asnumpy().max(axis=1).sum()
    avg_q_score = total_q / float(len(samples))
    return avg_q_score 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:9,代码来源:dqn_run_test.py

示例15: calculate_avg_reward

# 需要导入模块: from mxnet import ndarray [as 别名]
# 或者: from mxnet.ndarray import array [as 别名]
def calculate_avg_reward(game, qnet, test_steps=125000, exploartion=0.05):
    game.force_restart()
    action_num = len(game.action_set)
    total_reward = 0
    steps_left = test_steps
    episode = 0
    while steps_left > 0:
        # Running New Episode
        episode += 1
        episode_q_value = 0.0
        game.begin_episode(steps_left)
        start = time.time()
        while not game.episode_terminate:
            # 1. We need to choose a new action based on the current game status
            if game.state_enabled:
                do_exploration = (npy_rng.rand() < exploartion)
                if do_exploration:
                    action = npy_rng.randint(action_num)
                else:
                    # TODO Here we can in fact play multiple gaming instances simultaneously and make actions for each
                    # We can simply stack the current_state() of gaming instances and give prediction for all of them
                    # We need to wait after calling calc_score(.), which makes the program slow
                    # TODO Profiling the speed of this part!
                    current_state = game.current_state()
                    state = nd.array(current_state.reshape((1,) + current_state.shape),
                                     ctx=qnet.ctx) / float(255.0)
                    action = int(nd.argmax_channel(
                        qnet.forward(is_train=False, data=state)[0]).asscalar())
            else:
                action = npy_rng.randint(action_num)

            # 2. Play the game for a single mega-step (Inside the game, the action may be repeated for several times)
            game.play(action)
        end = time.time()
        steps_left -= game.episode_step
        print('Episode:%d, FPS:%s, Steps Left:%d, Reward:%d' \
              % (episode, game.episode_step / (end - start), steps_left, game.episode_reward))
        total_reward += game.episode_reward
    avg_reward = total_reward / float(episode)
    return avg_reward 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:42,代码来源:dqn_run_test.py


注:本文中的mxnet.ndarray.array方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。