本文整理汇总了Python中mxnet.nd.repeat方法的典型用法代码示例。如果您正苦于以下问题:Python nd.repeat方法的具体用法?Python nd.repeat怎么用?Python nd.repeat使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mxnet.nd
的用法示例。
在下文中一共展示了nd.repeat方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: Route
# 需要导入模块: from mxnet import nd [as 别名]
# 或者: from mxnet.nd import repeat [as 别名]
def Route(self, x):
# b_mat = nd.repeat(self.b_mat.data(), repeats=x.shape[0], axis=0)#nd.stop_gradient(nd.repeat(self.b_mat.data(), repeats=x.shape[0], axis=0))
b_mat = nd.zeros((x.shape[0],1,self.num_cap, self.num_locations), ctx=x.context)
x_expand = nd.expand_dims(nd.expand_dims(x, axis=2),2)
w_expand = nd.repeat(nd.expand_dims(self.w_ij.data(x.context),axis=0), repeats=x.shape[0], axis=0)
u_ = w_expand*x_expand
# u_ = nd.abs(w_expand - x_expand)
u = nd.sum(u_, axis = 1)
u_no_gradient = nd.stop_gradient(u)
for i in range(self.route_num):
c_mat = nd.softmax(b_mat, axis=2)
if i == self.route_num -1:
s = nd.sum(u * c_mat, axis=-1)
else:
s = nd.sum(u_no_gradient * c_mat, axis=-1)
v = squash(s, 1)
v1 = nd.expand_dims(v, axis=-1)
if i != self.route_num - 1:
update_term = nd.sum(u_no_gradient*v1, axis=1, keepdims=True)
b_mat = b_mat + update_term
return v
示例2: forward
# 需要导入模块: from mxnet import nd [as 别名]
# 或者: from mxnet.nd import repeat [as 别名]
def forward(self, samples, matches, anchors, refs):
"""Forward"""
F = nd
# TODO(zhreshold): batch_pick, take multiple elements?
ref_boxes = nd.repeat(refs.reshape((0, 1, -1, 4)), axis=1, repeats=matches.shape[1])
ref_boxes = nd.split(ref_boxes, axis=-1, num_outputs=4, squeeze_axis=True)
ref_boxes = nd.concat(*[F.pick(ref_boxes[i], matches, axis=2).reshape((0, -1, 1)) \
for i in range(4)], dim=2)
g = self.corner_to_center(ref_boxes)
a = self.corner_to_center(anchors)
t0 = ((g[0] - a[0]) / a[2] - self._means[0]) / self._stds[0]
t1 = ((g[1] - a[1]) / a[3] - self._means[1]) / self._stds[1]
t2 = (F.log(g[2] / a[2]) - self._means[2]) / self._stds[2]
t3 = (F.log(g[3] / a[3]) - self._means[3]) / self._stds[3]
codecs = F.concat(t0, t1, t2, t3, dim=2)
temp = F.tile(samples.reshape((0, -1, 1)), reps=(1, 1, 4)) > 0.5
targets = F.where(temp, codecs, F.zeros_like(codecs))
masks = F.where(temp, F.ones_like(temp), F.zeros_like(temp))
return targets, masks
示例3: hybrid_forward
# 需要导入模块: from mxnet import nd [as 别名]
# 或者: from mxnet.nd import repeat [as 别名]
def hybrid_forward(self, F, samples, matches, refs):
refs = F.repeat(refs.reshape((0, 1, -1)), axis=1, repeats=matches.shape[1])
target_ids = F.pick(refs, matches, axis=2) + 1
targets = F.where(samples > 0.5, target_ids, nd.ones_like(target_ids) * self._ignore_label)
targets = F.where(samples < -0.5, nd.zeros_like(targets), targets)
return targets
示例4: resize_contain
# 需要导入模块: from mxnet import nd [as 别名]
# 或者: from mxnet.nd import repeat [as 别名]
def resize_contain(src, size, fill=0):
"""Resize the image to fit in the given area while keeping aspect ratio.
If both the height and the width in `size` are larger than
the height and the width of input image, the image is placed on
the center with an appropriate padding to match `size`.
Otherwise, the input image is scaled to fit in a canvas whose size
is `size` while preserving aspect ratio.
Parameters
----------
src : mxnet.nd.NDArray
The original image with HWC format.
size : tuple
Tuple of length 2 as (width, height).
fill : int or float or array-like
The value(s) for padded borders. If `fill` is numerical type, RGB channels
will be padded with single value. Otherwise `fill` must have same length
as image channels, which resulted in padding with per-channel values.
Returns
-------
mxnet.nd.NDArray
Augmented image.
tuple
Tuple of (offset_x, offset_y, scaled_x, scaled_y)
"""
h, w, c = src.shape
ow, oh = size
scale_h = oh / h
scale_w = ow / w
scale = min(min(scale_h, scale_w), 1)
scaled_x = int(w * scale)
scaled_y = int(h * scale)
if scale < 1:
src = mx.image.imresize(src, scaled_x, scaled_y)
off_y = (oh - scaled_y) // 2 if scaled_y < oh else 0
off_x = (ow - scaled_x) // 2 if scaled_x < ow else 0
# make canvas
if isinstance(fill, numeric_types):
dst = nd.full(shape=(oh, ow, c), val=fill, dtype=src.dtype)
else:
fill = nd.array(fill, ctx=src.context)
if not c == fill.size:
raise ValueError("Channel and fill size mismatch, {} vs {}".format(c, fill.size))
dst = nd.repeat(fill, repeats=oh * ow).reshape((oh, ow, c))
dst[off_y:off_y+scaled_y, off_x:off_x+scaled_x, :] = src
return dst, (off_x, off_y, scaled_x, scaled_y)
示例5: resize_contain
# 需要导入模块: from mxnet import nd [as 别名]
# 或者: from mxnet.nd import repeat [as 别名]
def resize_contain(src, size, fill=0):
"""Resize the image to fit in the given area while keeping aspect ratio.
If both the height and the width in `size` are larger than
the height and the width of input image, the image is placed on
the center with an appropriate padding to match `size`.
Otherwise, the input image is scaled to fit in a canvas whose size
is `size` while preserving aspect ratio.
Parameters
----------
src : mxnet.nd.NDArray
The original image with HWC format.
size : tuple
Tuple of length 2 as (width, height).
fill : int or float or array-like
The value(s) for padded borders. If `fill` is numerical type, RGB channels
will be padded with single value. Otherwise `fill` must have same length
as image channels, which resulted in padding with per-channel values.
Returns
-------
mxnet.nd.NDArray
Augmented image.
tuple
Tuple of (offset_x, offset_y, scaled_x, scaled_y)
"""
h, w, c = src.shape
ow, oh = size
scale_h = oh / h
scale_w = oh / w
scale = min(min(scale_h, scale_w), 1)
scaled_x = int(w * scale)
scaled_y = int(h * scale)
if scale < 1:
src = mx.image.imresize(src, scaled_x, scaled_y)
off_y = (oh - scaled_y) // 2 if scaled_y < oh else 0
off_x = (ow - scaled_x) // 2 if scaled_x < ow else 0
# make canvas
if isinstance(fill, numeric_types):
dst = nd.full(shape=(oh, ow, c), val=fill, dtype=src.dtype)
else:
fill = nd.array(fill, ctx=src.context)
if not c == fill.size:
raise ValueError("Channel and fill size mismatch, {} vs {}".format(c, fill.size))
dst = nd.repeat(fill, repeats=oh * ow).reshape((oh, ow, c))
dst[off_y:off_y+scaled_y, off_x:off_x+scaled_x, :] = src
return dst, (off_x, off_y, scaled_x, scaled_y)