本文整理汇总了Python中mxnet.nd.concatenate方法的典型用法代码示例。如果您正苦于以下问题:Python nd.concatenate方法的具体用法?Python nd.concatenate怎么用?Python nd.concatenate使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mxnet.nd
的用法示例。
在下文中一共展示了nd.concatenate方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: bbox_transform
# 需要导入模块: from mxnet import nd [as 别名]
# 或者: from mxnet.nd import concatenate [as 别名]
def bbox_transform(anchor, bbox):
w = anchor[:, 2] - anchor[:, 0]
h = anchor[:, 3] - anchor[:, 1]
cx = (anchor[:, 0] + anchor[:, 2]) / 2.0
cy = (anchor[:, 1] + anchor[:, 3]) / 2.0
g_w = bbox[:, 2] - bbox[:, 0]
g_h = bbox[:, 3] - bbox[:, 1]
g_cx = (bbox[:, 0] + bbox[:, 2]) / 2.0
g_cy = (bbox[:, 1] + bbox[:, 3]) / 2.0
g_w = mx.ndarray.log(g_w / w)
g_h = mx.ndarray.log(g_h / h)
g_cx = (g_cx - cx) / w
g_cy = (g_cy - cy) / h
return mx.ndarray.concatenate([
g_w.reshape((-1, 1)),
g_h.reshape((-1, 1)),
g_cx.reshape((-1, 1)),
g_cy.reshape((-1, 1))], axis=1)
示例2: bbox_inverse_transform
# 需要导入模块: from mxnet import nd [as 别名]
# 或者: from mxnet.nd import concatenate [as 别名]
def bbox_inverse_transform(anchor, bbox):
w = anchor[:, 2] - anchor[:, 0]
h = anchor[:, 3] - anchor[:, 1]
cx = (anchor[:, 0] + anchor[:, 2]) / 2.0
cy = (anchor[:, 1] + anchor[:, 3]) / 2.0
g_w = mx.ndarray.exp(bbox[:, 0]) * w
g_h = mx.ndarray.exp(bbox[:, 1]) * h
g_cx = bbox[:, 2] * w + cx
g_cy = bbox[:, 3] * h + cy
g_x1 = g_cx - g_w / 2
g_y1 = g_cy - g_h / 2
g_x2 = g_cx + g_w / 2
g_y2 = g_cy + g_h / 2
return mx.ndarray.concatenate([
g_x1.reshape((-1, 1)),
g_y1.reshape((-1, 1)),
g_x2.reshape((-1, 1)),
g_y2.reshape((-1, 1))], axis=1)
示例3: bbox_overlaps
# 需要导入模块: from mxnet import nd [as 别名]
# 或者: from mxnet.nd import concatenate [as 别名]
def bbox_overlaps(anchors:mx.nd.NDArray, gt:mx.nd.NDArray):
"""
Get IoU of the anchors and ground truth bounding boxes.
The shape of anchors and gt should be (N, 4) and (M, 4)
So the shape of return value is (N, M)
"""
ret = []
for i in range(gt.shape[0]):
cgt = gt[i].reshape((1, 4)).broadcast_to(anchors.shape)
# inter
x0 = nd.max(nd.stack(anchors[:,0], cgt[:,0]), axis=0)
y0 = nd.max(nd.stack(anchors[:,1], cgt[:,1]), axis=0)
x1 = nd.min(nd.stack(anchors[:,2], cgt[:,2]), axis=0)
y1 = nd.min(nd.stack(anchors[:,3], cgt[:,3]), axis=0)
inter = _get_area(nd.concatenate([x0.reshape((-1, 1)),
y0.reshape((-1, 1)),
x1.reshape((-1, 1)),
y1.reshape((-1, 1))], axis=1))
outer = _get_area(anchors) + _get_area(cgt) - inter
iou = inter / outer
ret.append(iou.reshape((-1, 1)))
ret=nd.concatenate(ret, axis=1)
return ret
示例4: sample_train_batch
# 需要导入模块: from mxnet import nd [as 别名]
# 或者: from mxnet.nd import concatenate [as 别名]
def sample_train_batch(self):
"""Sample a training batch (data and label)."""
batch = []
labels = []
num_groups = self.batch_size // self.batch_k
# For CUB200, we use the first 100 classes for training.
sampled_classes = np.random.choice(100, num_groups, replace=False)
for i in range(num_groups):
img_fnames = np.random.choice(self.train_image_files[sampled_classes[i]],
self.batch_k, replace=False)
batch += [self.get_image(img_fname, is_train=True) for img_fname in img_fnames]
labels += [sampled_classes[i] for _ in range(self.batch_k)]
return nd.concatenate(batch, axis=0), labels
示例5: get_test_batch
# 需要导入模块: from mxnet import nd [as 别名]
# 或者: from mxnet.nd import concatenate [as 别名]
def get_test_batch(self):
"""Sample a testing batch (data and label)."""
batch_size = self.batch_size
batch = [self.get_image(self.test_image_files[(self.test_count*batch_size + i)
% len(self.test_image_files)],
is_train=False) for i in range(batch_size)]
labels = [self.test_labels[(self.test_count*batch_size + i)
% len(self.test_image_files)] for i in range(batch_size)]
return nd.concatenate(batch, axis=0), labels
示例6: test
# 需要导入模块: from mxnet import nd [as 别名]
# 或者: from mxnet.nd import concatenate [as 别名]
def test(ctx):
"""Test a model."""
val_data.reset()
outputs = []
labels = []
for batch in val_data:
data = gluon.utils.split_and_load(batch.data[0], ctx_list=ctx, batch_axis=0)
label = gluon.utils.split_and_load(batch.label[0], ctx_list=ctx, batch_axis=0)
for x in data:
outputs.append(net(x)[-1])
labels += label
outputs = nd.concatenate(outputs, axis=0)[:val_data.n_test]
labels = nd.concatenate(labels, axis=0)[:val_data.n_test]
return evaluate_emb(outputs, labels)
示例7: predict
# 需要导入模块: from mxnet import nd [as 别名]
# 或者: from mxnet.nd import concatenate [as 别名]
def predict(yolo:Yolo,x,threshold=0.5):
"""
return label ,C,location
:param yolo:
:return:
"""
assert len(x)==1,"Only One image for now"
ypre = yolo(x)
label, preds, location = deal_output(ypre, yolo.s, b=yolo.b, c=yolo.class_num)
indexs = []
for i,c in enumerate(preds[0]):
if c > threshold:
indexs.append(i)
class_names = []
C_list =[]
bos_list = []
for index in indexs:
label_index = int(index / 2)
location_offect = int(index % 2)
class_index = nd.argmax(label[0][label_index], axis=0)
C = preds[0][index]
locat = location[0][label_index][location_offect]
C_list.append(C.asscalar())
#######traslate the name
label_name = yolo.class_names
text = label_name[int(class_index.asscalar()) ]
class_names.append(text)
###traslate the locat
x, y, w, h = locat
w, h = nd.power(w, 2), nd.power(h, 2)
ceil = 1 / 4
row = int(label_index / 4)
columns = label_index % 4
x_center = columns * ceil + x
y_center = row * ceil + y
x_min, y_min, x_max, y_max = x_center - 0.5 * w, y_center - 0.5 * h, x_center + 0.5 * w, y_center + 0.5 * h
box = nd.concatenate([x_min, y_min, x_max, y_max], axis=0) * 256
bos_list.append(box.asnumpy())
return class_names,C_list,bos_list