本文整理汇总了Python中mxnet.image.imresize方法的典型用法代码示例。如果您正苦于以下问题:Python image.imresize方法的具体用法?Python image.imresize怎么用?Python image.imresize使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mxnet.image
的用法示例。
在下文中一共展示了image.imresize方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: forward
# 需要导入模块: from mxnet import image [as 别名]
# 或者: from mxnet.image import imresize [as 别名]
def forward(self, x):
if isinstance(self._size, numeric_types):
if not self._keep:
wsize = self._size
hsize = self._size
else:
h, w, _ = x.shape
if h > w:
wsize = self._size
hsize = int(h * wsize / w)
else:
hsize = self._size
wsize = int(w * hsize / h)
else:
wsize, hsize = self._size
return image.imresize(x, wsize, hsize, self._interpolation)
示例2: load_data_fashion_mnist
# 需要导入模块: from mxnet import image [as 别名]
# 或者: from mxnet.image import imresize [as 别名]
def load_data_fashion_mnist(batch_size, resize=None, root="~/.mxnet/datasets/fashion-mnist"):
"""download the fashion mnist dataest and then load into memory"""
def transform_mnist(data, label):
# Transform a batch of examples.
if resize:
n = data.shape[0]
new_data = nd.zeros((n, resize, resize, data.shape[3]))
for i in range(n):
new_data[i] = image.imresize(data[i], resize, resize)
data = new_data
# change data from batch x height x width x channel to batch x channel x height x width
return nd.transpose(data.astype('float32'), (0, 3, 1, 2)) / 255, label.astype('float32')
mnist_train = gluon.data.vision.FashionMNIST(root=root, train=True, transform=None)
mnist_test = gluon.data.vision.FashionMNIST(root=root, train=False, transform=None)
# Transform later to avoid memory explosion.
train_data = DataLoader(mnist_train, batch_size, shuffle=True, transform=transform_mnist)
test_data = DataLoader(mnist_test, batch_size, shuffle=False, transform=transform_mnist)
return (train_data, test_data)
示例3: load_data_mnist
# 需要导入模块: from mxnet import image [as 别名]
# 或者: from mxnet.image import imresize [as 别名]
def load_data_mnist(batch_size, resize=None, root="~/.mxnet/datasets/mnist"):
"""download the fashion mnist dataest and then load into memory"""
def transform_mnist(data, label):
# Transform a batch of examples.
if resize:
n = data.shape[0]
new_data = nd.zeros((n, resize, resize, data.shape[3]))
for i in range(n):
new_data[i] = image.imresize(data[i], resize, resize)
data = new_data
# change data from batch x height x width x channel to batch x channel x height x width
return nd.transpose(data.astype('float32'), (0, 3, 1, 2)) / 255, label.astype('float32')
mnist_train = gluon.data.vision.MNIST(root=root, train=True, transform=None)
mnist_test = gluon.data.vision.MNIST(root=root, train=False, transform=None)
# Transform later to avoid memory explosion.
train_data = DataLoader(mnist_train, batch_size, shuffle=True, transform=transform_mnist)
test_data = DataLoader(mnist_test, batch_size, shuffle=False, transform=transform_mnist)
return (train_data, test_data)
示例4: load_data_fashion_mnist
# 需要导入模块: from mxnet import image [as 别名]
# 或者: from mxnet.image import imresize [as 别名]
def load_data_fashion_mnist(batch_size, resize=None, root="~/.mxnet/datasets/fashion-mnist"):
"""download the fashion mnist dataest and then load into memory"""
def transform_mnist(data, label):
# Transform a batch of examples.
if resize:
n = data.shape[0]
new_data = nd.zeros((n, resize, resize, data.shape[3]))
for i in range(n):
new_data[i] = image.imresize(data[i], resize, resize)
data = new_data
# change data from batch x height x width x channel to batch x channel x height x width
return nd.transpose(data.astype('float32'), (0,3,1,2))/255, label.astype('float32')
mnist_train = gluon.data.vision.FashionMNIST(root=root, train=True, transform=None)
mnist_test = gluon.data.vision.FashionMNIST(root=root, train=False, transform=None)
# Transform later to avoid memory explosion.
train_data = DataLoader(mnist_train, batch_size, shuffle=True, transform=transform_mnist)
test_data = DataLoader(mnist_test, batch_size, shuffle=False, transform=transform_mnist)
return (train_data, test_data)
示例5: load_data_fashion_mnist
# 需要导入模块: from mxnet import image [as 别名]
# 或者: from mxnet.image import imresize [as 别名]
def load_data_fashion_mnist(batch_size, resize=None):
"""download the fashion mnist dataest and then load into memory"""
def transform_mnist(data, label):
if resize:
# resize to resize x resize
data = image.imresize(data, resize, resize)
# change data from height x weight x channel to channel x height x weight
return nd.transpose(data.astype('float32'), (2,0,1))/255, label.astype('float32')
mnist_train = gluon.data.vision.FashionMNIST(root='./data',
train=True, transform=transform_mnist)
mnist_test = gluon.data.vision.FashionMNIST(root='./data',
train=False, transform=transform_mnist)
train_data = gluon.data.DataLoader(
mnist_train, batch_size, shuffle=True)
test_data = gluon.data.DataLoader(
mnist_test, batch_size, shuffle=False)
return (train_data, test_data)
示例6: load_data_mnist
# 需要导入模块: from mxnet import image [as 别名]
# 或者: from mxnet.image import imresize [as 别名]
def load_data_mnist(batch_size, resize=None):
"""download the fashion mnist dataest and then load into memory"""
def transform_mnist(data, label):
if resize:
# resize to resize x resize
data = image.imresize(data, resize, resize)
# change data from height x weight x channel to channel x height x weight
return nd.transpose(data.astype('float32'), (2,0,1))/255, label.astype('float32')
mnist_train = gluon.data.vision.MNIST(root='./data',
train=True, transform=transform_mnist)
mnist_test = gluon.data.vision.MNIST(root='./data',
train=False, transform=transform_mnist)
train_data = gluon.data.DataLoader(
mnist_train, batch_size, shuffle=True)
test_data = gluon.data.DataLoader(
mnist_test, batch_size, shuffle=False)
return (train_data, test_data)
示例7: process_image
# 需要导入模块: from mxnet import image [as 别名]
# 或者: from mxnet.image import imresize [as 别名]
def process_image(fname, data_shape, rgb_mean, rgb_std):
with open(fname, 'rb') as f:
im = image.imdecode(f.read())
data = image.imresize(im, data_shape, data_shape)
data = (data.astype('float32') - rgb_mean) / rgb_std
return data.transpose((2, 0, 1)).expand_dims(axis=0), im
示例8: pre_processing
# 需要导入模块: from mxnet import image [as 别名]
# 或者: from mxnet.image import imresize [as 别名]
def pre_processing(self, img):
"""
对图片进行处理
:param img_path: 图片
:return:
"""
data_augment = False
if self.phase == 'train' and np.random.rand() > 0.5:
data_augment = True
if data_augment:
img_h = 40
img_w = 340
else:
img_h = self.img_h
img_w = self.img_w
img = image.imdecode(img, 1 if self.img_channel == 3 else 0)
h, w = img.shape[:2]
ratio_h = float(img_h) / h
new_w = int(w * ratio_h)
if new_w < img_w:
img = image.imresize(img, w=new_w, h=img_h)
step = nd.zeros((img_h, img_w - new_w, self.img_channel), dtype=img.dtype)
img = nd.concat(img, step, dim=1)
else:
img = image.imresize(img, w=img_w, h=img_h)
if data_augment:
img, _ = image.random_crop(img, (self.img_w, self.img_h))
return img