本文整理汇总了Python中mxnet.gpu方法的典型用法代码示例。如果您正苦于以下问题:Python mxnet.gpu方法的具体用法?Python mxnet.gpu怎么用?Python mxnet.gpu使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mxnet
的用法示例。
在下文中一共展示了mxnet.gpu方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import gpu [as 别名]
def main():
"""Module main execution"""
# Initialization variables - update to change your model and execution context
model_prefix = "FCN8s_VGG16"
epoch = 19
# By default, MXNet will run on the CPU. Change to ctx = mx.gpu() to run on GPU.
ctx = mx.cpu()
fcnxs, fcnxs_args, fcnxs_auxs = mx.model.load_checkpoint(model_prefix, epoch)
fcnxs_args["data"] = mx.nd.array(get_data(args.input), ctx)
data_shape = fcnxs_args["data"].shape
label_shape = (1, data_shape[2]*data_shape[3])
fcnxs_args["softmax_label"] = mx.nd.empty(label_shape, ctx)
exector = fcnxs.bind(ctx, fcnxs_args, args_grad=None, grad_req="null", aux_states=fcnxs_args)
exector.forward(is_train=False)
output = exector.outputs[0]
out_img = np.uint8(np.squeeze(output.asnumpy().argmax(axis=1)))
out_img = Image.fromarray(out_img)
out_img.putpalette(get_palette())
out_img.save(args.output)
示例2: __init__
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import gpu [as 别名]
def __init__(self, args):
# Default training settings
self.ctx = mx.gpu(0) if args.gpu else mx.cpu()
self.init_func = mx.init.Xavier(rnd_type='uniform', factor_type="in",
magnitude=1)
self.learning_rate = 1e-3
self.update_rule = "adam"
self.grad_clip = True
self.clip_magnitude = 40
# Default model settings
self.hidden_size = 200
self.gamma = 0.99
self.lambda_ = 1.0
self.vf_wt = 0.5 # Weight of value function term in the loss
self.entropy_wt = 0.01 # Weight of entropy term in the loss
self.num_envs = 16
self.t_max = 50
# Override defaults with values from `args`.
for arg in self.__dict__:
if arg in args.__dict__:
self.__setattr__(arg, args.__dict__[arg])
示例3: main
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import gpu [as 别名]
def main():
# testing configurations
cell_types = [gluon.rnn.RNNCell,
gluon.rnn.GRUCell,
gluon.rnn.LSTMCell]
ctxs = [mx.cpu(0)]
if args.gpu:
ctxs = ctxs + [mx.gpu(i) for i in _get_gpus()]
seq_lens = [100]
batch_sizes = [1, 32]
hidden_dims = [512]
print("--------------------------------------")
print("Benchmarking", args.benchmark)
for cell_type, ctx, seq_len, batch_size, hidden_dim in product( \
cell_types, ctxs, seq_lens, batch_sizes, hidden_dims):
print("--------------------------------------")
print("cell: %s ctx: %s length: %d batch size: %d dim: %d" % \
(cell_type.__name__, str(ctx), seq_len, batch_size, hidden_dim))
run_benchmark(cell_type, ctx, seq_len, batch_size, hidden_dim)
示例4: test_sync_push_pull
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import gpu [as 别名]
def test_sync_push_pull():
kv, my_rank, nworker = init_kv()
num_gpus = 2
def check_default_keys(kv, my_rank, nworker):
nrepeat = 3
# checks pull after push in loop, because behavior during
# consecutive pushes doesn't offer any guarantees
for i in range(nrepeat):
scale = my_rank + 1
kv.push('3', [mx.nd.ones(shape, ctx=mx.gpu(j)) * scale for j in range(num_gpus)])
kv.push('99', [mx.nd.ones(big_shape, ctx=mx.gpu(j)) * scale for j in range(num_gpus)])
num = (nworker + 1) * nworker * rate * num_gpus / 2 * (i + 1) + 1
val = mx.nd.zeros(shape)
kv.pull('3', out=val)
check_diff_to_scalar(val, num)
val2 = mx.nd.zeros(big_shape)
kv.pull('99', out=val2)
check_diff_to_scalar(val2, num)
check_default_keys(kv, my_rank, nworker)
print('worker ' + str(my_rank) + ' is done')
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:23,代码来源:dist_device_sync_kvstore.py
示例5: test_kvstore
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import gpu [as 别名]
def test_kvstore(kv_type, stype):
print(kv_type)
kv = mx.kv.create(kv_type)
kv.set_optimizer(mx.optimizer.create('test', rescale_grad=lr))
for k, s in zip(keys, shapes):
kv.init(k, mx.nd.zeros(s))
res = [np.zeros(s) for s in shapes]
for i in range(nrepeat):
for j in range(len(keys)):
kv.push(keys[j], [mx.nd.array(
data[i][j][g], mx.gpu(g)).tostype(stype) for g in range(nworker)])
res = [a + b * lr for a, b in zip(res, [sum(d) for d in data[i]])]
for j in range(len(keys)):
out = [mx.nd.zeros(shapes[j], mx.gpu(g)) for g in range(nworker)]
kv.pull(keys[j], out=out)
err = [np.sum(np.abs(o.asnumpy() - res[j])) for o in out]
err = sum(err) / np.sum(np.abs(res[j]))
assert(err < 1e-6), (err, shapes[j])
示例6: test_group_kvstore
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import gpu [as 别名]
def test_group_kvstore(kv_type, stype):
print(kv_type)
kv = mx.kv.create(kv_type)
kv.set_optimizer(mx.optimizer.create('test', rescale_grad=lr))
kv.init(keys, [mx.nd.zeros(s) for s in shapes])
res = [np.zeros(s) for s in shapes]
out = [[mx.nd.zeros(s, mx.gpu(g)) for g in range(nworker)] for s in shapes]
for i in range(nrepeat):
kv.push(keys, [[
mx.nd.array(data[i][j][g], mx.gpu(g)).tostype(stype) for g in range(nworker)]
for j in range(len(keys))])
kv.pull(keys, out=out)
res = [a + b * lr for a, b in zip(res, [sum(d) for d in data[i]])]
for a, b in zip(res, out):
err = [np.sum(np.abs(o.asnumpy() - a)) for o in b]
err = sum(err) / np.sum(np.abs(a))
assert(err < 1e-6), (err, a.shape)
示例7: test_sync_init
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import gpu [as 别名]
def test_sync_init(gpu_tests=False):
def get_dtype(idx, cur_keys):
if idx < len(cur_keys)/2:
dtype = 'float32'
else:
dtype = 'float16'
return dtype
def check_init(kv, cur_keys, cur_shape, device=False):
ctx = mx.gpu(0) if device else mx.cpu()
val = [mx.nd.zeros(cur_shape, ctx=ctx, dtype=get_dtype(i, cur_keys)) for i in range(len(cur_keys))]
for i in range(len(cur_keys)):
expected = i
kv.init(cur_keys[i], [mx.nd.ones(cur_shape, ctx=ctx, dtype=get_dtype(i, cur_keys)) * i])
kv.pull(cur_keys[i], out=val[i])
check_diff(val[i], expected)
check_init(kv, init_test_keys, shape)
check_init(kv, init_test_keys_big, big_shape)
if gpu_tests:
check_init(kv, init_test_keys_device, shape, device=True)
check_init(kv, init_test_keys_device_big, big_shape, device=True)
print('worker ' + str(kv.rank) + ' is initialized')
示例8: check_rnn_layer
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import gpu [as 别名]
def check_rnn_layer(layer):
layer.collect_params().initialize(ctx=[mx.cpu(0), mx.gpu(0)])
with mx.gpu(0):
x = mx.nd.ones((10, 16, 30))
states = layer.begin_state(16)
go, gs = layer(x, states)
with mx.cpu(0):
x = mx.nd.ones((10, 16, 30))
states = layer.begin_state(16)
co, cs = layer(x, states)
# atol of 1e-6 required, as exposed by seed 2124685726
assert_almost_equal(go.asnumpy(), co.asnumpy(), rtol=1e-2, atol=1e-6)
for g, c in zip(gs, cs):
assert_almost_equal(g.asnumpy(), c.asnumpy(), rtol=1e-2, atol=1e-6)
示例9: check_rnn_layer_w_rand_inputs
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import gpu [as 别名]
def check_rnn_layer_w_rand_inputs(layer):
layer.collect_params().initialize(ctx=[mx.cpu(0), mx.gpu(0)])
x = mx.nd.uniform(shape=(10, 16, 30))
with mx.gpu(0):
x = x.copyto(mx.gpu(0))
states = layer.begin_state(16)
go, gs = layer(x, states)
with mx.cpu(0):
x = x.copyto(mx.cpu(0))
states = layer.begin_state(16)
co, cs = layer(x, states)
assert_almost_equal(go.asnumpy(), co.asnumpy(), rtol=1e-2, atol=1e-6)
for g, c in zip(gs, cs):
assert_almost_equal(g.asnumpy(), c.asnumpy(), rtol=1e-2, atol=1e-6)
示例10: test_deconvolution_large_c
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import gpu [as 别名]
def test_deconvolution_large_c():
problematic_c = 64 * 1024
# The deconvolution accumulates many values, so set large tolerances.
tol = {np.dtype(np.float32): 1,
np.dtype(np.float64): 1}
def test_1D_with_width(width, grad_req):
ctx_list = [{'ctx': mx.gpu(0), 'deconv_data': (1, 8, width), 'type_dict': {'deconv_data': np.float32}},
{'ctx': mx.gpu(0), 'deconv_data': (1, 8, width), 'type_dict': {'deconv_data': np.float64}}]
sym = mx.sym.Deconvolution(layout='NCW', num_filter=problematic_c, kernel=(2,), name='deconv')
check_consistency([sym, sym], ctx_list, tol=tol, grad_req=grad_req)
def test_2D_with_width(width, grad_req):
ctx_list = [{'ctx': mx.gpu(0), 'deconv_data': (1, 8, 2, width), 'type_dict': {'deconv_data': np.float32}},
{'ctx': mx.gpu(0), 'deconv_data': (1, 8, 2, width), 'type_dict': {'deconv_data': np.float64}}]
sym = mx.sym.Deconvolution(layout='NCHW', num_filter=problematic_c, kernel=(2,2), name='deconv')
check_consistency([sym, sym], ctx_list, tol=tol, grad_req=grad_req)
# Run with different data tensor shapes to run cudnnFind() multiple times.
# First, populate algo and op caches with models that always use cudnnFind() (req == 'write').
# Then run models that must avoid cached cudnnFind() results in some cases (req == 'add').
widths = [4, 16, 64]
for req in ['write', 'add']:
for width in widths:
test_1D_with_width(width, req)
test_2D_with_width(width, req)
示例11: test_convolution_versions
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import gpu [as 别名]
def test_convolution_versions():
# 2D convolution NCHW
ctx_list = [{'ctx': mx.cpu(0), 'conv_data': (2, 2, 7, 7), 'type_dict': {'conv_data': np.float32}},
{'ctx': mx.gpu(0), 'conv_data': (2, 2, 7, 7), 'type_dict': {'conv_data': np.float32}},
{'ctx': mx.gpu(0), 'conv_data': (2, 2, 7, 7), 'type_dict': {'conv_data': np.float32}},
{'ctx': mx.cpu(0), 'conv_data': (2, 2, 7, 7), 'type_dict': {'conv_data': np.float32}},
{'ctx': mx.gpu(0), 'conv_data': (2, 2, 7, 7), 'type_dict': {'conv_data': np.float32}}]
conv_v1_cpu = mx.sym.Convolution_v1(num_filter=3, kernel=(3,3), pad=(1,1), name='conv')
conv_v1_gpu = mx.sym.Convolution_v1(num_filter=3, kernel=(3,3), pad=(1,1), cudnn_off=True, name='conv')
conv_cudnn = mx.sym.Convolution(num_filter=3, kernel=(3,3), pad=(1,1), name='conv')
conv_cpu = mx.sym.Convolution(num_filter=3, kernel=(3,3), pad=(1,1), name='conv')
conv_gpu = mx.sym.Convolution(num_filter=3, kernel=(3,3), pad=(1,1), cudnn_off=True, name='conv')
syms = [conv_v1_cpu, conv_v1_gpu, conv_cudnn, conv_cpu, conv_gpu]
check_consistency(syms, ctx_list)
# 3D convolution NCDHW
ctx_list = [{'ctx': mx.gpu(0), 'conv_data': (2, 2, 5, 7, 7), 'type_dict': {'conv_data': np.float32}},
{'ctx': mx.cpu(0), 'conv_data': (2, 2, 5, 7, 7), 'type_dict': {'conv_data': np.float32}},
{'ctx': mx.gpu(0), 'conv_data': (2, 2, 5, 7, 7), 'type_dict': {'conv_data': np.float32}}]
conv_cudnn = mx.sym.Convolution(num_filter=3, kernel=(2,3,3), pad=(1,1,1), name='conv')
conv_cpu = mx.sym.Convolution(num_filter=3, kernel=(2,3,3), pad=(1,1,1), name='conv')
conv_gpu = mx.sym.Convolution(num_filter=3, kernel=(2,3,3), pad=(1,1,1), cudnn_off=True, name='conv')
syms = [conv_cudnn, conv_cpu, conv_gpu]
check_consistency(syms, ctx_list)
示例12: test_bilinear_sampler_with_type
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import gpu [as 别名]
def test_bilinear_sampler_with_type():
data = mx.sym.Variable('data')
grid = mx.sym.Variable('grid')
sym = mx.sym.BilinearSampler(data=data, grid=grid)
ctx_list = [{'ctx': mx.gpu(0), 'data': (1, 5, 10, 10), 'grid': (1, 2, 10, 10),
'type_dict': {'data': np.float64}},
{'ctx': mx.gpu(0), 'data': (1, 5, 10, 10), 'grid': (1, 2, 10, 10),
'type_dict': {'data': np.float32}},
{'ctx': mx.gpu(0), 'data': (1, 5, 10, 10), 'grid': (1, 2, 10, 10),
'type_dict': {'data': np.float16}},
{'ctx': mx.cpu(0), 'data': (1, 5, 10, 10), 'grid': (1, 2, 10, 10),
'type_dict': {'data': np.float64}},
{'ctx': mx.cpu(0), 'data': (1, 5, 10, 10), 'grid': (1, 2, 10, 10),
'type_dict': {'data': np.float32}}]
check_consistency(sym, ctx_list)
check_consistency(sym, ctx_list, grad_req="add")
示例13: test_spatial_transformer_with_type
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import gpu [as 别名]
def test_spatial_transformer_with_type():
data = mx.sym.Variable('data')
loc = mx.sym.Flatten(data)
loc = mx.sym.FullyConnected(data=loc, num_hidden=10)
loc = mx.sym.Activation(data=loc, act_type='relu')
loc = mx.sym.FullyConnected(data=loc, num_hidden=6)
sym = mx.sym.SpatialTransformer(data=data, loc=loc, target_shape=(10, 10),
transform_type="affine", sampler_type="bilinear", cudnn_off=True)
ctx_list = [{'ctx': mx.gpu(0), 'data': (1, 5, 10, 10), 'type_dict': {'data': np.float64}},
{'ctx': mx.cpu(0), 'data': (1, 5, 10, 10), 'type_dict': {'data': np.float64}}]
check_consistency(sym, ctx_list)
check_consistency(sym, ctx_list, grad_req="add")
sym = mx.sym.SpatialTransformer(data=data, loc=loc, target_shape=(10, 10),
transform_type="affine", sampler_type="bilinear", cudnn_off=False)
check_consistency(sym, ctx_list)
check_consistency(sym, ctx_list, grad_req="add")
示例14: test_pooling_with_type2
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import gpu [as 别名]
def test_pooling_with_type2():
ctx_list = [{'ctx': mx.gpu(0), 'pool_data': (10, 2, 10, 10), 'type_dict': {'pool_data': np.float64}},
{'ctx': mx.gpu(0), 'pool_data': (10, 2, 10, 10), 'type_dict': {'pool_data': np.float32}},
{'ctx': mx.gpu(0), 'pool_data': (10, 2, 10, 10), 'type_dict': {'pool_data': np.float16}},
{'ctx': mx.cpu(0), 'pool_data': (10, 2, 10, 10), 'type_dict': {'pool_data': np.float64}},
{'ctx': mx.cpu(0), 'pool_data': (10, 2, 10, 10), 'type_dict': {'pool_data': np.float32}}]
sym = mx.sym.Pooling(name='pool', kernel=(3,3), stride=(2,2), pool_type='max')
check_consistency(sym, ctx_list, rand_type=np.float16)
sym = mx.sym.Pooling(name='pool', kernel=(3,3), pad=(1,1), pool_type='avg')
check_consistency(sym, ctx_list)
sym = mx.sym.Pooling(name='pool', kernel=(5,5), pad=(2,2), pool_type='max')
check_consistency(sym, ctx_list, rand_type=np.float16)
sym = mx.sym.Pooling(name='pool', kernel=(3,3), pad=(1,1), pool_type='sum')
check_consistency(sym, ctx_list)
示例15: test_elementwisesum_with_type
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import gpu [as 别名]
def test_elementwisesum_with_type():
dev_types = [[mx.gpu(0), [np.float64, np.float32, np.float16]],
[mx.cpu(0), [np.float64, np.float32]] ]
for num_args in range(1, 6):
ews_arg_shape = {}
for i in range(num_args):
ews_arg_shape['ews_arg'+str(i)] = (2, 10)
sym = mx.sym.ElementWiseSum(name='ews', num_args=num_args)
ctx_list = []
for dev, types in dev_types:
for dtype in types:
ews_arg_dtype = {'type_dict':{}}
for i in range(num_args):
ews_arg_dtype['type_dict']['ews_arg'+str(i)] = dtype
ctx_elem = {'ctx': dev}
ctx_elem.update(ews_arg_shape)
ctx_elem.update(ews_arg_dtype)
ctx_list.append(ctx_elem)
check_consistency(sym, ctx_list)