本文整理汇总了Python中mxnet.gluon.nn.Sequential方法的典型用法代码示例。如果您正苦于以下问题:Python nn.Sequential方法的具体用法?Python nn.Sequential怎么用?Python nn.Sequential使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mxnet.gluon.nn
的用法示例。
在下文中一共展示了nn.Sequential方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Sequential [as 别名]
def __init__(self, inplanes, planes, stride=1, downsample=None, norm_layer=InstanceNorm):
super(Bottleneck, self).__init__()
self.expansion = 4
self.downsample = downsample
if self.downsample is not None:
self.residual_layer = nn.Conv2D(in_channels=inplanes,
channels=planes * self.expansion,
kernel_size=1, strides=(stride, stride))
self.conv_block = nn.Sequential()
with self.conv_block.name_scope():
self.conv_block.add(norm_layer(in_channels=inplanes))
self.conv_block.add(nn.Activation('relu'))
self.conv_block.add(nn.Conv2D(in_channels=inplanes, channels=planes,
kernel_size=1))
self.conv_block.add(norm_layer(in_channels=planes))
self.conv_block.add(nn.Activation('relu'))
self.conv_block.add(ConvLayer(planes, planes, kernel_size=3,
stride=stride))
self.conv_block.add(norm_layer(in_channels=planes))
self.conv_block.add(nn.Activation('relu'))
self.conv_block.add(nn.Conv2D(in_channels=planes,
channels=planes * self.expansion,
kernel_size=1))
示例2: test_basic
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Sequential [as 别名]
def test_basic():
model = nn.Sequential()
model.add(nn.Dense(128, activation='tanh', in_units=10, flatten=False))
model.add(nn.Dropout(0.5))
model.add(nn.Dense(64, activation='tanh', in_units=256),
nn.Dense(32, in_units=64))
model.add(nn.Activation('relu'))
# symbol
x = mx.sym.var('data')
y = model(x)
assert len(y.list_arguments()) == 7
# ndarray
model.collect_params().initialize(mx.init.Xavier(magnitude=2.24))
x = model(mx.nd.zeros((32, 2, 10)))
assert x.shape == (32, 32)
x.wait_to_read()
model.collect_params().setattr('grad_req', 'null')
assert list(model.collect_params().values())[0]._grad is None
model.collect_params().setattr('grad_req', 'write')
assert list(model.collect_params().values())[0]._grad is not None
示例3: test_lambda
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Sequential [as 别名]
def test_lambda():
net1 = mx.gluon.nn.HybridSequential()
net1.add(nn.Activation('tanh'),
nn.LeakyReLU(0.1))
net2 = mx.gluon.nn.HybridSequential()
op3 = lambda F, x, *args: F.LeakyReLU(x, *args, slope=0.1)
net2.add(nn.HybridLambda('tanh'),
nn.HybridLambda(op3))
op4 = lambda x: mx.nd.LeakyReLU(x, slope=0.1)
net3 = mx.gluon.nn.Sequential()
net3.add(nn.Lambda('tanh'),
nn.Lambda(op4))
input_data = mx.nd.random.uniform(shape=(2, 3, 5, 7))
out1, out2, out3 = net1(input_data), net2(input_data), net3(input_data)
assert_almost_equal(out1.asnumpy(), out2.asnumpy(), rtol=1e-3, atol=1e-3)
assert_almost_equal(out1.asnumpy(), out3.asnumpy(), rtol=1e-3, atol=1e-3)
示例4: test_summary
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Sequential [as 别名]
def test_summary():
net = gluon.model_zoo.vision.resnet50_v1()
net.initialize()
net.summary(mx.nd.ones((32, 3, 224, 224)))
net2 = nn.Sequential()
with net2.name_scope():
net2.add(nn.Embedding(40, 30))
net2.add(gluon.rnn.LSTM(30))
net2.add(nn.Dense(40, flatten=False, params=net2[0].params))
net2.initialize()
net2.summary(mx.nd.ones((80, 32)))
net3 = gluon.rnn.LSTM(30)
net3.initialize()
begin_state = net3.begin_state(32)
net3.summary(mx.nd.ones((80, 32, 5)), begin_state)
net.hybridize()
assert_raises(AssertionError, net.summary, mx.nd.ones((32, 3, 224, 224)))
示例5: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Sequential [as 别名]
def __init__(self,
g,
in_feats,
n_hidden,
n_classes,
n_layers,
activation,
dropout,
aggregator_type):
super(GraphSAGE, self).__init__()
self.g = g
with self.name_scope():
self.layers = nn.Sequential()
# input layer
self.layers.add(SAGEConv(in_feats, n_hidden, aggregator_type, feat_drop=dropout, activation=activation))
# hidden layers
for i in range(n_layers - 1):
self.layers.add(SAGEConv(n_hidden, n_hidden, aggregator_type, feat_drop=dropout, activation=activation))
# output layer
self.layers.add(SAGEConv(n_hidden, n_classes, aggregator_type, feat_drop=dropout, activation=None)) # activation None
示例6: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Sequential [as 别名]
def __init__(self,
in_feats,
out_feats,
n_steps,
n_etypes,
bias=True):
super(GatedGraphConv, self).__init__()
self._in_feats = in_feats
self._out_feats = out_feats
self._n_steps = n_steps
self._n_etypes = n_etypes
if not bias:
raise KeyError('MXNet do not support disabling bias in GRUCell.')
with self.name_scope():
self.linears = nn.Sequential()
for _ in range(n_etypes):
self.linears.add(
nn.Dense(out_feats,
weight_initializer=mx.init.Xavier(),
in_units=out_feats)
)
self.gru = gluon.rnn.GRUCell(out_feats, input_size=out_feats)
示例7: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Sequential [as 别名]
def __init__(self,
in_feats,
out_feats,
k,
bias=True):
super(DenseChebConv, self).__init__()
self._in_feats = in_feats
self._out_feats = out_feats
self._k = k
with self.name_scope():
self.fc = nn.Sequential()
for _ in range(k):
self.fc.add(
nn.Dense(out_feats, in_units=in_feats, use_bias=False,
weight_initializer=mx.init.Xavier(magnitude=math.sqrt(2.0)))
)
if bias:
self.bias = self.params.get('bias', shape=(out_feats,),
init=mx.init.Zero())
else:
self.bias = None
示例8: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Sequential [as 别名]
def __init__(self,
in_feats,
out_feats,
k,
bias=True):
super(ChebConv, self).__init__()
self._in_feats = in_feats
self._out_feats = out_feats
self._k = k
with self.name_scope():
self.fc = nn.Sequential()
for _ in range(k):
self.fc.add(
nn.Dense(out_feats, use_bias=False,
weight_initializer=mx.init.Xavier(magnitude=math.sqrt(2.0)),
in_units=in_feats)
)
if bias:
self.bias = self.params.get('bias', shape=(out_feats,),
init=mx.init.Zero())
else:
self.bias = None
示例9: get_netD
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Sequential [as 别名]
def get_netD():
# build the discriminator
netD = nn.Sequential()
with netD.name_scope():
# input is (nc) x 64 x 64
netD.add(nn.Conv2D(ndf, 4, 2, 1, use_bias=False))
netD.add(nn.LeakyReLU(0.2))
# state size. (ndf) x 32 x 32
netD.add(nn.Conv2D(ndf * 2, 4, 2, 1, use_bias=False))
netD.add(nn.BatchNorm())
netD.add(nn.LeakyReLU(0.2))
# state size. (ndf*2) x 16 x 16
netD.add(nn.Conv2D(ndf * 4, 4, 2, 1, use_bias=False))
netD.add(nn.BatchNorm())
netD.add(nn.LeakyReLU(0.2))
# state size. (ndf*4) x 8 x 8
netD.add(nn.Conv2D(ndf * 8, 4, 2, 1, use_bias=False))
netD.add(nn.BatchNorm())
netD.add(nn.LeakyReLU(0.2))
# state size. (ndf*8) x 4 x 4
netD.add(nn.Conv2D(2, 4, 1, 0, use_bias=False))
# state size. 2 x 1 x 1
return netD
示例10: _build_custom_neural_network
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Sequential [as 别名]
def _build_custom_neural_network(num_inputs, num_labels):
from mxnet.gluon import nn
net = nn.Sequential(prefix='custom_')
with net.name_scope():
net.add(nn.Dense(512, in_units=num_inputs, activation='relu', prefix='dense0_'))
net.add(nn.BatchNorm())
net.add(nn.Dropout(0.5))
net.add(nn.Dense(512, activation='relu', prefix='dense1_'))
net.add(nn.BatchNorm())
net.add(nn.Dropout(0.5))
net.add(nn.Dense(256, activation='relu', prefix='dense2_'))
net.add(nn.BatchNorm())
net.add(nn.Dropout(0.5))
net.add(nn.Dense(128, activation='relu', prefix='dense3_'))
net.add(nn.BatchNorm())
net.add(nn.Dropout(0.5))
net.add(nn.Dense(64, activation='relu', prefix='dense4_'))
net.add(nn.BatchNorm())
net.add(nn.Dropout(0.5))
net.add(nn.Dense(num_labels, prefix='dense5_'))
return net
示例11: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Sequential [as 别名]
def __init__(self, kernel_size, channels_out, channels_in, stride=1, with_bn=True, **kwargs):
#super(residual, self).__init__(**kwargs)
super(residual, self).__init__()
with self.name_scope():
self.conv1 = nn.Conv2D(channels_out, kernel_size=(3,3), strides=(stride, stride), padding=(1,1), in_channels=channels_in, use_bias=False)
self.bn1 = nn.BatchNorm(in_channels= channels_out)
self.conv2 = nn.Conv2D(channels_out, kernel_size=(3,3), strides=(1, 1), padding=(1,1), in_channels = channels_out,use_bias=False)
self.bn2 = nn.BatchNorm(in_channels= channels_out)
#self.skip = nn.HybridSequential()
self.skip = nn.Sequential()
if stride != 1 or channels_in != channels_out:
self.skip.add( nn.Conv2D(channels_out, kernel_size=(1,1), strides=(stride, stride), in_channels= channels_in, use_bias=False),
nn.BatchNorm(in_channels= channels_out)
)
示例12: net_define
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Sequential [as 别名]
def net_define():
net = nn.Sequential()
with net.name_scope():
net.add(nn.Embedding(config.MAX_WORDS, config.EMBEDDING_DIM))
net.add(rnn.GRU(128,layout='NTC',bidirectional=True, num_layers=2, dropout=0.2))
net.add(transpose(axes=(0,2,1)))
# net.add(nn.MaxPool2D(pool_size=(config.MAX_LENGTH,1)))
# net.add(nn.Conv2D(128, kernel_size=(101,1), padding=(50,0), groups=128,activation='relu'))
net.add(PrimeConvCap(8,32, kernel_size=(1,1), padding=(0,0)))
# net.add(AdvConvCap(8,32,8,32, kernel_size=(1,1), padding=(0,0)))
net.add(CapFullyBlock(8*(config.MAX_LENGTH)/2, num_cap=12, input_units=32, units=16, route_num=5))
# net.add(CapFullyBlock(8*(config.MAX_LENGTH-8), num_cap=12, input_units=32, units=16, route_num=5))
# net.add(CapFullyBlock(8, num_cap=12, input_units=32, units=16, route_num=5))
net.add(nn.Dropout(0.2))
# net.add(LengthBlock())
net.add(nn.Dense(6, activation='sigmoid'))
net.initialize(init=init.Xavier())
return net
示例13: net_define_eu
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Sequential [as 别名]
def net_define_eu():
net = nn.Sequential()
with net.name_scope():
net.add(nn.Embedding(config.MAX_WORDS, config.EMBEDDING_DIM))
net.add(rnn.GRU(128,layout='NTC',bidirectional=True, num_layers=1, dropout=0.2))
net.add(transpose(axes=(0,2,1)))
net.add(nn.GlobalMaxPool1D())
'''
net.add(FeatureBlock1())
'''
net.add(extendDim(axes=3))
net.add(PrimeConvCap(16, 32, kernel_size=(1,1), padding=(0,0),strides=(1,1)))
net.add(CapFullyNGBlock(16, num_cap=12, input_units=32, units=16, route_num=3))
net.add(nn.Dropout(0.2))
net.add(nn.Dense(6, activation='sigmoid'))
net.initialize(init=init.Xavier())
return net
示例14: resnet18
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Sequential [as 别名]
def resnet18(num_classes):
"""The ResNet-18 model."""
net = nn.Sequential()
net.add(nn.Conv2D(64, kernel_size=3, strides=1, padding=1),
nn.BatchNorm(), nn.Activation('relu'))
def resnet_block(num_channels, num_residuals, first_block=False):
blk = nn.Sequential()
for i in range(num_residuals):
if i == 0 and not first_block:
blk.add(Residual(num_channels, use_1x1conv=True, strides=2))
else:
blk.add(Residual(num_channels))
return blk
net.add(resnet_block(64, 2, first_block=True),
resnet_block(128, 2),
resnet_block(256, 2),
resnet_block(512, 2))
net.add(nn.GlobalAvgPool2D(), nn.Dense(num_classes))
return net
示例15: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Sequential [as 别名]
def __init__(self, kwspaces, softmax_temperature=1.0, ctx=mx.cpu(), **kwargs):
super().__init__(**kwargs)
self.softmax_temperature = softmax_temperature
self.spaces = list(kwspaces.items())
self.context = ctx
# only support Categorical space for now
self.num_tokens = []
for _, space in self.spaces:
assert isinstance(space, Categorical)
self.num_tokens.append(len(space))
# controller lstm
self.decoders = nn.Sequential()
for idx, size in enumerate(self.num_tokens):
self.decoders.add(Alpha((size,)))