本文整理汇总了Python中mxnet.gluon.nn.MaxPool2D方法的典型用法代码示例。如果您正苦于以下问题:Python nn.MaxPool2D方法的具体用法?Python nn.MaxPool2D怎么用?Python nn.MaxPool2D使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mxnet.gluon.nn
的用法示例。
在下文中一共展示了nn.MaxPool2D方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import MaxPool2D [as 别名]
def __init__(self):
super(CellStem0, self).__init__()
self.conv_1x1 = nn.HybridSequential()
self.conv_1x1.add(nn.Activation(activation='relu'))
self.conv_1x1.add(nn.Conv2D(42, 1, strides=1, use_bias=False))
self.conv_1x1.add(nn.BatchNorm(epsilon=0.001, momentum=0.1))
self.comb_iter_0_left = BranchSeparables(42, 42, 5, 2, 2)
self.comb_iter_0_right = BranchSeparablesStem(96, 42, 7, 2, 3, bias=False)
self.comb_iter_1_left = nn.MaxPool2D(pool_size=3, strides=2, padding=1)
self.comb_iter_1_right = BranchSeparablesStem(96, 42, 7, 2, 3, bias=False)
self.comb_iter_2_left = nn.AvgPool2D(pool_size=3, strides=2, padding=1)
self.comb_iter_2_right = BranchSeparablesStem(96, 42, 5, 2, 2, bias=False)
self.comb_iter_3_right = nn.AvgPool2D(pool_size=3, strides=1, padding=1)
self.comb_iter_4_left = BranchSeparables(42, 42, 3, 1, 1, bias=False)
self.comb_iter_4_right = nn.MaxPool2D(pool_size=3, strides=2, padding=1)
示例2: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import MaxPool2D [as 别名]
def __init__(self, num_init_features, growth_rate, block_config,
bn_size=4, dropout=0, classes=1000, **kwargs):
super(DenseNet, self).__init__(**kwargs)
with self.name_scope():
self.features = nn.HybridSequential(prefix='')
self.features.add(nn.Conv2D(num_init_features, kernel_size=3,
strides=1, padding=1, use_bias=False))
self.features.add(nn.BatchNorm())
self.features.add(nn.Activation('relu'))
self.features.add(nn.MaxPool2D(pool_size=3, strides=2, padding=1))
# Add dense blocks
num_features = num_init_features
for i, num_layers in enumerate(block_config):
self.features.add(_make_dense_block(num_layers, bn_size, growth_rate, dropout, i+1))
num_features = num_features + num_layers * growth_rate
if i != len(block_config) - 1:
self.features.add(_make_transition(num_features // 2))
num_features = num_features // 2
self.features.add(nn.BatchNorm())
self.features.add(nn.Activation('relu'))
#self.features.add(nn.AvgPool2D(pool_size=7))
#self.features.add(nn.Flatten())
#self.output = nn.Dense(classes)
示例3: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import MaxPool2D [as 别名]
def __init__(self, channels, size1=14, scale=(1, 2, 1),
norm_layer=BatchNorm, norm_kwargs=None, **kwargs):
super(AttentionModule_stage3, self).__init__(**kwargs)
p, t, r = scale
with self.name_scope():
self.first_residual_blocks = nn.HybridSequential()
_add_block(self.first_residual_blocks, ResidualBlock, p, channels,
norm_layer=norm_layer, norm_kwargs=norm_kwargs)
self.trunk_branches = nn.HybridSequential()
_add_block(self.trunk_branches, ResidualBlock, t, channels,
norm_layer=norm_layer, norm_kwargs=norm_kwargs)
self.mpool1 = nn.MaxPool2D(pool_size=3, strides=2, padding=1)
self.softmax1_blocks = nn.HybridSequential()
_add_block(self.softmax1_blocks, ResidualBlock, 2 * r, channels,
norm_layer=norm_layer, norm_kwargs=norm_kwargs)
self.interpolation1 = UpsamplingBilinear2d(size=size1)
self.softmax2_blocks = nn.HybridSequential()
_add_sigmoid_layer(self.softmax2_blocks, channels, norm_layer, norm_kwargs)
self.last_blocks = ResidualBlock(channels)
示例4: _make_level
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import MaxPool2D [as 别名]
def _make_level(self, block, inplanes, planes, blocks, norm_layer, norm_kwargs, stride=1):
downsample = None
if stride != 1 or inplanes != planes:
downsample = nn.HybridSequential()
downsample.add(*[
nn.MaxPool2D(stride, strides=stride),
nn.Conv2D(channels=planes, in_channels=inplanes,
kernel_size=1, strides=1, use_bias=False),
norm_layer(in_channels=planes, **norm_kwargs)])
layers = []
layers.append(block(inplanes, planes, stride,
norm_layer=norm_layer, norm_kwargs=norm_kwargs, downsample=downsample))
for _ in range(1, blocks):
layers.append(block(inplanes, planes, norm_layer=norm_layer, norm_kwargs=norm_kwargs))
curr_level = nn.HybridSequential()
curr_level.add(*layers)
return curr_level
示例5: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import MaxPool2D [as 别名]
def __init__(self, block, layers, channels, classes=1000, thumbnail=False,
last_gamma=False, use_se=False, norm_layer=BatchNorm, norm_kwargs=None, **kwargs):
super(ResNetV1, self).__init__(**kwargs)
assert len(layers) == len(channels) - 1
with self.name_scope():
self.features = nn.HybridSequential(prefix='')
if thumbnail:
self.features.add(_conv3x3(channels[0], 1, 0))
else:
self.features.add(nn.Conv2D(channels[0], 7, 2, 3, use_bias=False))
self.features.add(norm_layer(**({} if norm_kwargs is None else norm_kwargs)))
self.features.add(nn.Activation('relu'))
self.features.add(nn.MaxPool2D(3, 2, 1))
for i, num_layer in enumerate(layers):
stride = 1 if i == 0 else 2
self.features.add(self._make_layer(block, num_layer, channels[i+1],
stride, i+1, in_channels=channels[i],
last_gamma=last_gamma, use_se=use_se,
norm_layer=norm_layer, norm_kwargs=norm_kwargs))
self.features.add(nn.GlobalAvgPool2D())
self.output = nn.Dense(classes, in_units=channels[-1])
示例6: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import MaxPool2D [as 别名]
def __init__(self, block, layers, channels, classes=1000, thumbnail=False,
norm_layer=BatchNorm, norm_kwargs=None, **kwargs):
super(SE_ResNetV1, self).__init__(**kwargs)
assert len(layers) == len(channels) - 1
with self.name_scope():
self.features = nn.HybridSequential(prefix='')
if thumbnail:
self.features.add(_conv3x3(channels[0], 1, 0))
else:
self.features.add(nn.Conv2D(channels[0], 7, 2, 3, use_bias=False))
self.features.add(norm_layer(**({} if norm_kwargs is None else norm_kwargs)))
self.features.add(nn.Activation('relu'))
self.features.add(nn.MaxPool2D(3, 2, 1))
for i, num_layer in enumerate(layers):
stride = 1 if i == 0 else 2
self.features.add(self._make_layer(block, num_layer, channels[i+1],
stride, i+1, in_channels=channels[i],
norm_layer=norm_layer, norm_kwargs=norm_kwargs))
self.features.add(nn.GlobalAvgPool2D())
self.output = nn.Dense(classes, in_units=channels[-1])
示例7: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import MaxPool2D [as 别名]
def __init__(self, classes=1000, **kwargs):
super(AlexNet, self).__init__(**kwargs)
with self.name_scope():
self.features = nn.HybridSequential(prefix='')
with self.features.name_scope():
self.features.add(nn.Conv2D(64, kernel_size=11, strides=4,
padding=2, activation='relu'))
self.features.add(nn.MaxPool2D(pool_size=3, strides=2))
self.features.add(nn.Conv2D(192, kernel_size=5, padding=2,
activation='relu'))
self.features.add(nn.MaxPool2D(pool_size=3, strides=2))
self.features.add(nn.Conv2D(384, kernel_size=3, padding=1,
activation='relu'))
self.features.add(nn.Conv2D(256, kernel_size=3, padding=1,
activation='relu'))
self.features.add(nn.Conv2D(256, kernel_size=3, padding=1,
activation='relu'))
self.features.add(nn.MaxPool2D(pool_size=3, strides=2))
self.features.add(nn.Flatten())
self.features.add(nn.Dense(4096, activation='relu'))
self.features.add(nn.Dropout(0.5))
self.features.add(nn.Dense(4096, activation='relu'))
self.features.add(nn.Dropout(0.5))
self.output = nn.Dense(classes)
示例8: resnet18
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import MaxPool2D [as 别名]
def resnet18(num_classes):
net = nn.HybridSequential()
with net.name_scope():
net.add(
nn.BatchNorm(),
nn.Conv2D(64, kernel_size=3, strides=1),
nn.MaxPool2D(pool_size=3, strides=2),
Residual(64),
Residual(64),
Residual(128, same_shape=False),
Residual(128),
Residual(256, same_shape=False),
Residual(256),
nn.GlobalAvgPool2D(),
nn.Dense(num_classes)
)
return net
示例9: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import MaxPool2D [as 别名]
def __init__(self,
in_channels,
out_channels,
kernel_size,
padding,
**kwargs):
super(DPNInitBlock, self).__init__(**kwargs)
with self.name_scope():
self.conv = nn.Conv2D(
channels=out_channels,
kernel_size=kernel_size,
strides=2,
padding=padding,
use_bias=False,
in_channels=in_channels)
self.bn = dpn_batch_norm(channels=out_channels)
self.activ = nn.Activation("relu")
self.pool = nn.MaxPool2D(
pool_size=3,
strides=2,
padding=1)
示例10: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import MaxPool2D [as 别名]
def __init__(self,
in_channels,
out_channels_list,
bn_use_global_stats,
**kwargs):
super(DownUnit, self).__init__(**kwargs)
with self.name_scope():
self.blocks = nn.HybridSequential(prefix="")
for i, out_channels in enumerate(out_channels_list):
self.blocks.add(FishBlock(
in_channels=in_channels,
out_channels=out_channels,
bn_use_global_stats=bn_use_global_stats))
in_channels = out_channels
self.pool = nn.MaxPool2D(
pool_size=2,
strides=2)
示例11: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import MaxPool2D [as 别名]
def __init__(self,
in_channels,
out_channels,
bn_use_global_stats,
**kwargs):
super(PreResInitBlock, self).__init__(**kwargs)
with self.name_scope():
self.conv = nn.Conv2D(
channels=out_channels,
kernel_size=7,
strides=2,
padding=3,
use_bias=False,
in_channels=in_channels)
self.bn = nn.BatchNorm(
in_channels=out_channels,
use_global_stats=bn_use_global_stats)
self.activ = nn.Activation("relu")
self.pool = nn.MaxPool2D(
pool_size=3,
strides=2,
padding=1)
示例12: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import MaxPool2D [as 别名]
def __init__(self,
in_channels,
out_channels,
length,
bn_use_global_stats,
**kwargs):
super(DownAttBlock, self).__init__(**kwargs)
with self.name_scope():
self.pool = nn.MaxPool2D(
pool_size=3,
strides=2,
padding=1)
self.res_blocks = ResBlockSequence(
in_channels=in_channels,
out_channels=out_channels,
length=length,
bn_use_global_stats=bn_use_global_stats)
示例13: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import MaxPool2D [as 别名]
def __init__(self,
in_channels,
out_channels,
bn_use_global_stats=False,
bn_cudnn_off=False,
**kwargs):
super(ResInitBlock, self).__init__(**kwargs)
with self.name_scope():
self.conv = conv7x7_block(
in_channels=in_channels,
out_channels=out_channels,
strides=2,
bn_use_global_stats=bn_use_global_stats,
bn_cudnn_off=bn_cudnn_off)
self.pool = nn.MaxPool2D(
pool_size=3,
strides=2,
padding=1)
示例14: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import MaxPool2D [as 别名]
def __init__(self,
in_channels,
out_channels,
**kwargs):
super(DiracInitBlock, self).__init__(**kwargs)
with self.name_scope():
self.conv = nn.Conv2D(
channels=out_channels,
kernel_size=7,
strides=2,
padding=3,
use_bias=True,
in_channels=in_channels)
self.pool = nn.MaxPool2D(
pool_size=3,
strides=2,
padding=1)
示例15: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import MaxPool2D [as 别名]
def __init__(self,
in_channels,
out_channels,
**kwargs):
super(ShuffleInitBlock, self).__init__(**kwargs)
with self.name_scope():
self.conv = conv3x3(
in_channels=in_channels,
out_channels=out_channels,
strides=2)
self.bn = nn.BatchNorm(in_channels=out_channels)
self.activ = nn.Activation("relu")
self.pool = nn.MaxPool2D(
pool_size=3,
strides=2,
padding=1)