本文整理汇总了Python中mxnet.gluon.nn.BatchNorm方法的典型用法代码示例。如果您正苦于以下问题:Python nn.BatchNorm方法的具体用法?Python nn.BatchNorm怎么用?Python nn.BatchNorm使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mxnet.gluon.nn
的用法示例。
在下文中一共展示了nn.BatchNorm方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_fill_shape_load
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import BatchNorm [as 别名]
def test_fill_shape_load():
ctx = mx.context.current_context()
net1 = nn.HybridSequential()
with net1.name_scope():
net1.add(nn.Conv2D(64, kernel_size=2, padding=1),
nn.BatchNorm(),
nn.Dense(10))
net1.hybridize()
net1.initialize(ctx=ctx)
net1(mx.nd.ones((2,3,5,7), ctx))
net1.save_parameters('net_fill.params')
net2 = nn.HybridSequential()
with net2.name_scope():
net2.add(nn.Conv2D(64, kernel_size=2, padding=1),
nn.BatchNorm(),
nn.Dense(10))
net2.hybridize()
net2.initialize()
net2.load_parameters('net_fill.params', ctx)
assert net2[0].weight.shape[1] == 3, net2[0].weight.shape[1]
assert net2[1].gamma.shape[0] == 64, net2[1].gamma.shape[0]
assert net2[2].weight.shape[1] == 3072, net2[2].weight.shape[1]
示例2: test_slice_batchnorm
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import BatchNorm [as 别名]
def test_slice_batchnorm():
class Net(gluon.HybridBlock):
def __init__(self, slice, **kwargs):
super(Net, self).__init__(**kwargs)
with self.name_scope():
self.conv0 = nn.Conv2D(128, (1, 1))
self.bn0 = nn.BatchNorm()
self.slice = slice
def hybrid_forward(self, F, x):
x_in = self.conv0(x)
x_slice = x_in.slice(begin=tuple(self.slice[0]),
end=tuple(self.slice[1]))
out = self.bn0(x_slice)
return out
x = mx.nd.random.uniform(shape=(16, 128, 256, 256))
slice = [[0, 0, 0, 0], [4, 32, 32, 32]]
net = Net(slice)
check_layer_forward_withinput(net, x)
示例3: test_slice_batchnorm_slice_batchnorm
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import BatchNorm [as 别名]
def test_slice_batchnorm_slice_batchnorm():
class Net(gluon.HybridBlock):
def __init__(self, slice, **kwargs):
super(Net, self).__init__(**kwargs)
with self.name_scope():
self.conv0 = nn.Conv2D(128, (1, 1))
self.bn0 = nn.BatchNorm()
self.bn1 = nn.BatchNorm()
self.slice = slice
def hybrid_forward(self, F, x):
x_in = self.conv0(x)
x_slice = x_in.slice(begin=tuple(self.slice[0][0]), end=tuple(self.slice[0][1]))
y = self.bn0(x_slice)
y_slice = y.slice(begin=tuple(self.slice[1][0]), end=tuple(self.slice[1][1]))
out = self.bn1(y_slice)
return out
x = mx.nd.random.uniform(shape=(16, 128, 256, 256))
slice = [[[0, 0, 0, 0], [4, 32, 32, 32]], [[0, 0, 0, 0], [2, 64, 16, 16]]]
net = Net(slice)
check_layer_forward_withinput(net, x)
示例4: test_reshape_batchnorm_reshape_batchnorm
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import BatchNorm [as 别名]
def test_reshape_batchnorm_reshape_batchnorm():
class Net(gluon.HybridBlock):
def __init__(self, shape, **kwargs):
super(Net, self).__init__(**kwargs)
with self.name_scope():
self.conv0 = nn.Conv2D(128, (1, 1))
self.bn0 = nn.BatchNorm()
self.bn1 = nn.BatchNorm()
self.reshape = shape
def hybrid_forward(self, F, x):
x_in = self.conv0(x)
x_reshape = x_in.reshape(self.reshape[0])
y = self.bn0(x_reshape)
y_reshape = y.reshape(self.reshape[1])
out = self.bn1(y_reshape)
return out
x = mx.nd.random.uniform(shape=(4, 32, 64, 64))
shape = [(4, 64, 64, -1), (4, 128, -1, 32)]
net = Net(shape)
check_layer_forward_withinput(net, x)
示例5: test_slice_batchnorm_reshape_batchnorm
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import BatchNorm [as 别名]
def test_slice_batchnorm_reshape_batchnorm():
class Net(gluon.HybridBlock):
def __init__(self, shape, slice, **kwargs):
super(Net, self).__init__(**kwargs)
with self.name_scope():
self.conv0 = nn.Conv2D(128, (1, 1))
self.bn0 = nn.BatchNorm()
self.bn1 = nn.BatchNorm()
self.reshape = shape
self.slice = slice
def hybrid_forward(self, F, x):
x_in = self.conv0(x)
x_slice = x_in.slice(begin=tuple(self.slice[0]), end=tuple(self.slice[1]))
y = self.bn0(x_slice)
y_reshape = y.reshape(self.reshape)
out = self.bn1(y_reshape)
return out
x = mx.nd.random.uniform(shape=(16, 128, 256, 256))
slice = [[0, 0, 0, 0], [4, 32, 32, 32]]
shape = (1, 128, 64, -1)
net = Net(shape, slice)
check_layer_forward_withinput(net, x)
示例6: test_reshape_batchnorm_slice_batchnorm
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import BatchNorm [as 别名]
def test_reshape_batchnorm_slice_batchnorm():
class Net(gluon.HybridBlock):
def __init__(self, shape, slice, **kwargs):
super(Net, self).__init__(**kwargs)
with self.name_scope():
self.conv0 = nn.Conv2D(128, (1, 1))
self.bn0 = nn.BatchNorm()
self.bn1 = nn.BatchNorm()
self.reshape = shape
self.slice = slice
def hybrid_forward(self, F, x):
x_in = self.conv0(x)
x_reshape = x_in.reshape(self.reshape)
y = self.bn0(x_reshape)
y_slice = y.slice(begin=tuple(self.slice[0]), end=tuple(self.slice[1]))
out = self.bn1(y_slice)
return out
x = mx.nd.random.uniform(shape=(4, 32, 64, 64))
slice = [[0, 0, 0, 0], [2, 64, 32, 32]]
shape = (4, 64, 64, -1)
net = Net(shape, slice)
check_layer_forward_withinput(net, x)
示例7: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import BatchNorm [as 别名]
def __init__(self):
super(CellStem0, self).__init__()
self.conv_1x1 = nn.HybridSequential()
self.conv_1x1.add(nn.Activation(activation='relu'))
self.conv_1x1.add(nn.Conv2D(42, 1, strides=1, use_bias=False))
self.conv_1x1.add(nn.BatchNorm(epsilon=0.001, momentum=0.1))
self.comb_iter_0_left = BranchSeparables(42, 42, 5, 2, 2)
self.comb_iter_0_right = BranchSeparablesStem(96, 42, 7, 2, 3, bias=False)
self.comb_iter_1_left = nn.MaxPool2D(pool_size=3, strides=2, padding=1)
self.comb_iter_1_right = BranchSeparablesStem(96, 42, 7, 2, 3, bias=False)
self.comb_iter_2_left = nn.AvgPool2D(pool_size=3, strides=2, padding=1)
self.comb_iter_2_right = BranchSeparablesStem(96, 42, 5, 2, 2, bias=False)
self.comb_iter_3_right = nn.AvgPool2D(pool_size=3, strides=1, padding=1)
self.comb_iter_4_left = BranchSeparables(42, 42, 3, 1, 1, bias=False)
self.comb_iter_4_right = nn.MaxPool2D(pool_size=3, strides=2, padding=1)
示例8: _make_dense_layer
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import BatchNorm [as 别名]
def _make_dense_layer(growth_rate, bn_size, dropout):
new_features = nn.HybridSequential(prefix='')
new_features.add(nn.BatchNorm())
#new_features.add(nn.Activation('relu'))
new_features.add(Act())
new_features.add(nn.Conv2D(bn_size * growth_rate, kernel_size=1, use_bias=False))
new_features.add(nn.BatchNorm())
#new_features.add(nn.Activation('relu'))
new_features.add(Act())
new_features.add(nn.Conv2D(growth_rate, kernel_size=3, padding=1, use_bias=False))
if dropout:
new_features.add(nn.Dropout(dropout))
out = gluon.contrib.nn.HybridConcurrent(axis=1, prefix='')
out.add(gluon.contrib.nn.Identity())
out.add(new_features)
return out
示例9: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import BatchNorm [as 别名]
def __init__(self, num_init_features, growth_rate, block_config,
bn_size=4, dropout=0, classes=1000, **kwargs):
super(DenseNet, self).__init__(**kwargs)
with self.name_scope():
self.features = nn.HybridSequential(prefix='')
self.features.add(nn.Conv2D(num_init_features, kernel_size=3,
strides=1, padding=1, use_bias=False))
self.features.add(nn.BatchNorm())
self.features.add(nn.Activation('relu'))
self.features.add(nn.MaxPool2D(pool_size=3, strides=2, padding=1))
# Add dense blocks
num_features = num_init_features
for i, num_layers in enumerate(block_config):
self.features.add(_make_dense_block(num_layers, bn_size, growth_rate, dropout, i+1))
num_features = num_features + num_layers * growth_rate
if i != len(block_config) - 1:
self.features.add(_make_transition(num_features // 2))
num_features = num_features // 2
self.features.add(nn.BatchNorm())
self.features.add(nn.Activation('relu'))
#self.features.add(nn.AvgPool2D(pool_size=7))
#self.features.add(nn.Flatten())
#self.output = nn.Dense(classes)
示例10: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import BatchNorm [as 别名]
def __init__(self, depth, ctx, pretrained=True, num_classes=0):
super(ResNet, self).__init__()
self.pretrained = pretrained
with self.name_scope():
network = ResNet.__factory[depth](pretrained=pretrained, ctx=ctx).features[0:-1]
network[-1][0].body[0]._kwargs['stride'] = (1, 1)
network[-1][0].downsample[0]._kwargs['stride'] = (1, 1)
self.base = nn.HybridSequential()
for n in network:
self.base.add(n)
self.avgpool = nn.GlobalAvgPool2D()
self.flatten = nn.Flatten()
self.bn = nn.BatchNorm(center=False, scale=True)
self.bn.initialize(init=init.Zero(), ctx=ctx)
self.classifier = nn.Dense(num_classes, use_bias=False)
self.classifier.initialize(init=init.Normal(0.001), ctx=ctx)
示例11: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import BatchNorm [as 别名]
def __init__(self):
super(SRGenerator, self).__init__()
self.conv1 = nn.Conv2D(64, kernel_size=3, strides=1,padding=1,activation='relu')
self.res_block = nn.HybridSequential()
with self.name_scope():
for i in range(16):
self.res_block.add(
ResnetBlock()
)
self.res_block.add(
nn.Conv2D(64, kernel_size=3, strides=1,padding=1,use_bias=False),
nn.BatchNorm()
)
self.subpix_block1 = SubpixelBlock()
self.subpix_block2 = SubpixelBlock()
self.conv4 = nn.Conv2D(3,kernel_size=1,strides=1,activation='tanh')
示例12: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import BatchNorm [as 别名]
def __init__(self, channels, size1=14, scale=(1, 2, 1),
norm_layer=BatchNorm, norm_kwargs=None, **kwargs):
super(AttentionModule_stage3, self).__init__(**kwargs)
p, t, r = scale
with self.name_scope():
self.first_residual_blocks = nn.HybridSequential()
_add_block(self.first_residual_blocks, ResidualBlock, p, channels,
norm_layer=norm_layer, norm_kwargs=norm_kwargs)
self.trunk_branches = nn.HybridSequential()
_add_block(self.trunk_branches, ResidualBlock, t, channels,
norm_layer=norm_layer, norm_kwargs=norm_kwargs)
self.mpool1 = nn.MaxPool2D(pool_size=3, strides=2, padding=1)
self.softmax1_blocks = nn.HybridSequential()
_add_block(self.softmax1_blocks, ResidualBlock, 2 * r, channels,
norm_layer=norm_layer, norm_kwargs=norm_kwargs)
self.interpolation1 = UpsamplingBilinear2d(size=size1)
self.softmax2_blocks = nn.HybridSequential()
_add_sigmoid_layer(self.softmax2_blocks, channels, norm_layer, norm_kwargs)
self.last_blocks = ResidualBlock(channels)
示例13: _make_features
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import BatchNorm [as 别名]
def _make_features(self, layers, filters, batch_norm):
featurizer = mx.gluon.nn.HybridSequential(prefix='')
for i, num in enumerate(layers):
for _ in range(num):
featurizer.add(Conv2D(filters[i], kernel_size=3, padding=1,
weight_initializer=Xavier(rnd_type='gaussian',
factor_type='out',
magnitude=2),
bias_initializer='zeros'))
if batch_norm:
featurizer.add(BatchNorm())
featurizer.add(Activation('relu'))
featurizer.add(MaxPool2D(strides=2))
return featurizer
示例14: test_batchnorm
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import BatchNorm [as 别名]
def test_batchnorm():
layer = nn.BatchNorm(in_channels=10)
check_layer_forward(layer, (2, 10, 10, 10))
示例15: test_fill_shape_deferred
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import BatchNorm [as 别名]
def test_fill_shape_deferred():
net = nn.HybridSequential()
with net.name_scope():
net.add(nn.Conv2D(64, kernel_size=2, padding=1),
nn.BatchNorm(),
nn.Dense(10))
net.hybridize()
net.initialize()
net(mx.nd.ones((2,3,5,7)))
assert net[0].weight.shape[1] == 3, net[0].weight.shape[1]
assert net[1].gamma.shape[0] == 64, net[1].gamma.shape[0]
assert net[2].weight.shape[1] == 3072, net[2].weight.shape[1]