本文整理汇总了Python中mxnet.gluon.nn.Activation方法的典型用法代码示例。如果您正苦于以下问题:Python nn.Activation方法的具体用法?Python nn.Activation怎么用?Python nn.Activation使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mxnet.gluon.nn
的用法示例。
在下文中一共展示了nn.Activation方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Activation [as 别名]
def __init__(self, inplanes, planes, stride=1, downsample=None, norm_layer=InstanceNorm):
super(Bottleneck, self).__init__()
self.expansion = 4
self.downsample = downsample
if self.downsample is not None:
self.residual_layer = nn.Conv2D(in_channels=inplanes,
channels=planes * self.expansion,
kernel_size=1, strides=(stride, stride))
self.conv_block = nn.Sequential()
with self.conv_block.name_scope():
self.conv_block.add(norm_layer(in_channels=inplanes))
self.conv_block.add(nn.Activation('relu'))
self.conv_block.add(nn.Conv2D(in_channels=inplanes, channels=planes,
kernel_size=1))
self.conv_block.add(norm_layer(in_channels=planes))
self.conv_block.add(nn.Activation('relu'))
self.conv_block.add(ConvLayer(planes, planes, kernel_size=3,
stride=stride))
self.conv_block.add(norm_layer(in_channels=planes))
self.conv_block.add(nn.Activation('relu'))
self.conv_block.add(nn.Conv2D(in_channels=planes,
channels=planes * self.expansion,
kernel_size=1))
示例2: forward
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Activation [as 别名]
def forward(self, X):
h = F.Activation(self.conv1_1(X), act_type='relu')
h = F.Activation(self.conv1_2(h), act_type='relu')
relu1_2 = h
h = F.Pooling(h, pool_type='max', kernel=(2, 2), stride=(2, 2))
h = F.Activation(self.conv2_1(h), act_type='relu')
h = F.Activation(self.conv2_2(h), act_type='relu')
relu2_2 = h
h = F.Pooling(h, pool_type='max', kernel=(2, 2), stride=(2, 2))
h = F.Activation(self.conv3_1(h), act_type='relu')
h = F.Activation(self.conv3_2(h), act_type='relu')
h = F.Activation(self.conv3_3(h), act_type='relu')
relu3_3 = h
h = F.Pooling(h, pool_type='max', kernel=(2, 2), stride=(2, 2))
h = F.Activation(self.conv4_1(h), act_type='relu')
h = F.Activation(self.conv4_2(h), act_type='relu')
h = F.Activation(self.conv4_3(h), act_type='relu')
relu4_3 = h
return [relu1_2, relu2_2, relu3_3, relu4_3]
示例3: test_basic
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Activation [as 别名]
def test_basic():
model = nn.Sequential()
model.add(nn.Dense(128, activation='tanh', in_units=10, flatten=False))
model.add(nn.Dropout(0.5))
model.add(nn.Dense(64, activation='tanh', in_units=256),
nn.Dense(32, in_units=64))
model.add(nn.Activation('relu'))
# symbol
x = mx.sym.var('data')
y = model(x)
assert len(y.list_arguments()) == 7
# ndarray
model.collect_params().initialize(mx.init.Xavier(magnitude=2.24))
x = model(mx.nd.zeros((32, 2, 10)))
assert x.shape == (32, 32)
x.wait_to_read()
model.collect_params().setattr('grad_req', 'null')
assert list(model.collect_params().values())[0]._grad is None
model.collect_params().setattr('grad_req', 'write')
assert list(model.collect_params().values())[0]._grad is not None
示例4: test_reshape_activation
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Activation [as 别名]
def test_reshape_activation():
class Net(gluon.HybridBlock):
def __init__(self, act, shape, **kwargs):
super(Net, self).__init__(**kwargs)
with self.name_scope():
self.reshape = shape
self.act = nn.Activation(act)
def hybrid_forward(self, F, x):
x_reshape = x.reshape(self.reshape)
out = self.act(x_reshape)
return out
acts = ["relu", "sigmoid", "tanh", "softrelu"]
for act in acts:
x = mx.nd.random.uniform(-1, 1, shape=(4, 16, 32, 32))
shape = (4, 32, 32, -1)
net = Net(act, shape)
check_layer_forward_withinput(net, x)
示例5: test_slice_activation
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Activation [as 别名]
def test_slice_activation():
class Net(gluon.HybridBlock):
def __init__(self, act, slice, **kwargs):
super(Net, self).__init__(**kwargs)
with self.name_scope():
self.slice = slice
self.act = nn.Activation(act)
def hybrid_forward(self, F, x):
x_slice = x.slice(begin=self.slice[0], end=self.slice[1])
out = self.act(x_slice)
return out
acts = ["relu", "sigmoid", "tanh", "softrelu"]
for act in acts:
x = mx.nd.random.uniform(-1, 1, shape=(8, 32, 64, 64))
slice = [(0, 16, 32, 32), (4, 32, 64, 64)]
net = Net(act, slice)
check_layer_forward_withinput(net, x)
示例6: test_reshape_activation_reshape_activation
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Activation [as 别名]
def test_reshape_activation_reshape_activation():
class Net(gluon.HybridBlock):
def __init__(self, act0, act1, shape, **kwargs):
super(Net, self).__init__(**kwargs)
with self.name_scope():
self.reshape = shape
self.act0 = nn.Activation(act0)
self.act1 = nn.Activation(act1)
def hybrid_forward(self, F, x):
x_reshape = x.reshape(self.reshape[0])
y = self.act0(x_reshape)
y_reshape = y.reshape(self.reshape[1])
out = self.act1(y_reshape)
return out
acts = ["relu", "sigmoid", "tanh", "softrelu"]
for idx0, act0 in enumerate(acts):
for idx1, act1 in enumerate(acts):
if idx1 == idx0:
continue
x = mx.nd.random.uniform(-1, 1, shape=(4, 16, 32, 32))
shape = [(4, 32, 32, -1), (4, 32, 16, -1)]
net = Net(act0, act1, shape)
check_layer_forward_withinput(net, x)
示例7: test_slice_activation_slice_activation
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Activation [as 别名]
def test_slice_activation_slice_activation():
class Net(gluon.HybridBlock):
def __init__(self, act0, act1, slice, **kwargs):
super(Net, self).__init__(**kwargs)
with self.name_scope():
self.slice = slice
self.act0 = nn.Activation(act0)
self.act1 = nn.Activation(act1)
def hybrid_forward(self, F, x):
x_slice = x.slice(begin=self.slice[0][0], end=self.slice[0][1])
y = self.act0(x_slice)
y_slice = y.slice(begin=self.slice[1][0], end=self.slice[1][1])
out = self.act1(y_slice)
return out
acts = ["relu", "sigmoid", "tanh", "softrelu"]
for idx0, act0 in enumerate(acts):
for idx1, act1 in enumerate(acts):
if idx1 == idx0:
continue
x = mx.nd.random.uniform(-1, 1, shape=(8, 32, 64, 64))
slice = [[(0, 16, 32, 32), (4, 32, 64, 64)], [(2, 0, 16, 16), (4, 16, 32, 32)]]
net = Net(act0, act1, slice)
check_layer_forward_withinput(net, x)
示例8: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Activation [as 别名]
def __init__(self):
super(CellStem0, self).__init__()
self.conv_1x1 = nn.HybridSequential()
self.conv_1x1.add(nn.Activation(activation='relu'))
self.conv_1x1.add(nn.Conv2D(42, 1, strides=1, use_bias=False))
self.conv_1x1.add(nn.BatchNorm(epsilon=0.001, momentum=0.1))
self.comb_iter_0_left = BranchSeparables(42, 42, 5, 2, 2)
self.comb_iter_0_right = BranchSeparablesStem(96, 42, 7, 2, 3, bias=False)
self.comb_iter_1_left = nn.MaxPool2D(pool_size=3, strides=2, padding=1)
self.comb_iter_1_right = BranchSeparablesStem(96, 42, 7, 2, 3, bias=False)
self.comb_iter_2_left = nn.AvgPool2D(pool_size=3, strides=2, padding=1)
self.comb_iter_2_right = BranchSeparablesStem(96, 42, 5, 2, 2, bias=False)
self.comb_iter_3_right = nn.AvgPool2D(pool_size=3, strides=1, padding=1)
self.comb_iter_4_left = BranchSeparables(42, 42, 3, 1, 1, bias=False)
self.comb_iter_4_right = nn.MaxPool2D(pool_size=3, strides=2, padding=1)
示例9: _make_dense_layer
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Activation [as 别名]
def _make_dense_layer(growth_rate, bn_size, dropout):
new_features = nn.HybridSequential(prefix='')
new_features.add(nn.BatchNorm())
#new_features.add(nn.Activation('relu'))
new_features.add(Act())
new_features.add(nn.Conv2D(bn_size * growth_rate, kernel_size=1, use_bias=False))
new_features.add(nn.BatchNorm())
#new_features.add(nn.Activation('relu'))
new_features.add(Act())
new_features.add(nn.Conv2D(growth_rate, kernel_size=3, padding=1, use_bias=False))
if dropout:
new_features.add(nn.Dropout(dropout))
out = gluon.contrib.nn.HybridConcurrent(axis=1, prefix='')
out.add(gluon.contrib.nn.Identity())
out.add(new_features)
return out
示例10: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Activation [as 别名]
def __init__(self, num_init_features, growth_rate, block_config,
bn_size=4, dropout=0, classes=1000, **kwargs):
super(DenseNet, self).__init__(**kwargs)
with self.name_scope():
self.features = nn.HybridSequential(prefix='')
self.features.add(nn.Conv2D(num_init_features, kernel_size=3,
strides=1, padding=1, use_bias=False))
self.features.add(nn.BatchNorm())
self.features.add(nn.Activation('relu'))
self.features.add(nn.MaxPool2D(pool_size=3, strides=2, padding=1))
# Add dense blocks
num_features = num_init_features
for i, num_layers in enumerate(block_config):
self.features.add(_make_dense_block(num_layers, bn_size, growth_rate, dropout, i+1))
num_features = num_features + num_layers * growth_rate
if i != len(block_config) - 1:
self.features.add(_make_transition(num_features // 2))
num_features = num_features // 2
self.features.add(nn.BatchNorm())
self.features.add(nn.Activation('relu'))
#self.features.add(nn.AvgPool2D(pool_size=7))
#self.features.add(nn.Flatten())
#self.output = nn.Dense(classes)
示例11: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Activation [as 别名]
def __init__(self, in_channels_left, out_channels_left, in_channels_right, out_channels_right):
super(NormalCell, self).__init__()
self.conv_prev_1x1 = nn.HybridSequential()
self.conv_prev_1x1.add(nn.Activation(activation='relu'))
self.conv_prev_1x1.add(nn.Conv2D(channels=out_channels_left, kernel_size=1, strides=1, use_bias=False))
self.conv_prev_1x1.add(nn.BatchNorm(epsilon=0.001, momentum=0.1))
self.conv_1x1 = nn.HybridSequential()
self.conv_1x1.add(nn.Activation(activation='relu'))
self.conv_1x1.add(nn.Conv2D(channels=out_channels_right, kernel_size=1, strides=1, use_bias=False))
self.conv_1x1.add(nn.BatchNorm(epsilon=0.001, momentum=0.1))
self.comb_iter_0_left = BranchSeparables(out_channels_right, out_channels_right, 5, 1, 2, bias=False)
self.comb_iter_0_right = BranchSeparables(out_channels_left, out_channels_left, 3, 1, 1, bias=False)
self.comb_iter_1_left = BranchSeparables(out_channels_left, out_channels_left, 5, 1, 2, bias=False)
self.comb_iter_1_right = BranchSeparables(out_channels_left, out_channels_left, 3, 1, 1, bias=False)
self.comb_iter_2_left = nn.AvgPool2D(3, strides=1, padding=1)
self.comb_iter_3_left = nn.AvgPool2D(3, strides=1, padding=1)
self.comb_iter_3_right = nn.AvgPool2D(3, strides=1, padding=1)
self.comb_iter_4_left = BranchSeparables(out_channels_right, out_channels_right, 3, 1, 1, bias=False)
示例12: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Activation [as 别名]
def __init__(self, prefix, entry_block3_stride, use_global_stats, norm_layer):
super(EntryFlow, self).__init__(prefix)
with self.name_scope():
self.conv1 = nn.HybridSequential(prefix='conv1_')
with self.conv1.name_scope():
self.conv1.add(nn.Conv2D(32, kernel_size=3, strides=2, padding=1, use_bias=False, prefix='1_'))
self.conv1.add(norm_layer(in_channels=32, use_global_stats=use_global_stats, prefix='1_BN_'))
self.conv1.add(nn.Activation("relu"))
self.conv2 = nn.HybridSequential(prefix='conv1_')
with self.conv2.name_scope():
self.conv2.add(nn.Conv2D(64, kernel_size=3, padding=1, use_bias=False, prefix='2_'))
self.conv2.add(norm_layer(in_channels=64, use_global_stats=use_global_stats, prefix='2_BN_'))
self.conv2.add(nn.Activation("relu"))
self.conv3 = XceptionBlock(filters_list=[128, 128, 128], kernel_size=3, strides=2,
use_global_stats=use_global_stats, norm_layer=norm_layer,
dilation=1, depth_activation=False, in_filters=64, prefix='block1_')
self.conv4 = XceptionBlock(filters_list=[256, 256, 256], kernel_size=3, strides=2, return_skip=True,
use_global_stats=use_global_stats, norm_layer=norm_layer,
dilation=1, depth_activation=False, in_filters=128, prefix='block2_')
self.conv5 = XceptionBlock(filters_list=[728, 728, 728], kernel_size=3, strides=entry_block3_stride,
use_shortcut_conv=True, dilation=1, depth_activation=False, in_filters=256,
norm_layer=norm_layer, use_global_stats=use_global_stats, prefix='block3_')
示例13: get_activation
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Activation [as 别名]
def get_activation(act):
"""Get the activation based on the act string
Parameters
----------
act: str or HybridBlock
Returns
-------
ret: HybridBlock
"""
if act is None:
return lambda x: x
if isinstance(act, str):
if act == 'leaky':
return nn.LeakyReLU(0.1)
elif act in ['relu', 'sigmoid', 'tanh', 'softrelu', 'softsign']:
return nn.Activation(act)
else:
raise NotImplementedError
else:
return act
示例14: hybrid_forward
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Activation [as 别名]
def hybrid_forward(self, F, x):
residual = x
x = self.body(x)
if self.se:
w = F.contrib.AdaptiveAvgPooling2D(x, output_size=1)
w = self.se(w)
x = F.broadcast_mul(x, w)
if self.downsample:
residual = self.downsample(residual)
x = F.Activation(x + residual, act_type='relu')
return x
# Nets
示例15: __init__
# 需要导入模块: from mxnet.gluon import nn [as 别名]
# 或者: from mxnet.gluon.nn import Activation [as 别名]
def __init__(self, in_channels, channels, norm_layer=nn.BatchNorm, norm_kwargs=None, **kwargs):
super(_FCNHead, self).__init__()
with self.name_scope():
self.block = nn.HybridSequential()
inter_channels = in_channels // 4
with self.block.name_scope():
self.block.add(nn.Conv2D(in_channels=in_channels, channels=inter_channels,
kernel_size=3, padding=1, use_bias=False))
self.block.add(norm_layer(in_channels=inter_channels,
**({} if norm_kwargs is None else norm_kwargs)))
self.block.add(nn.Activation('relu'))
self.block.add(nn.Dropout(0.1))
self.block.add(nn.Conv2D(in_channels=inter_channels, channels=channels,
kernel_size=1))
# pylint: disable=arguments-differ