本文整理汇总了Python中mxnet.gluon.model_zoo.vision.get_model方法的典型用法代码示例。如果您正苦于以下问题:Python vision.get_model方法的具体用法?Python vision.get_model怎么用?Python vision.get_model使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mxnet.gluon.model_zoo.vision
的用法示例。
在下文中一共展示了vision.get_model方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_model
# 需要导入模块: from mxnet.gluon.model_zoo import vision [as 别名]
# 或者: from mxnet.gluon.model_zoo.vision import get_model [as 别名]
def get_model(model, ctx, opt):
"""Model initialization."""
kwargs = {'ctx': ctx, 'pretrained': opt.use_pretrained, 'classes': classes}
if model.startswith('resnet'):
kwargs['thumbnail'] = opt.use_thumbnail
elif model.startswith('vgg'):
kwargs['batch_norm'] = opt.batch_norm
net = models.get_model(model, **kwargs)
if opt.resume:
net.load_parameters(opt.resume)
elif not opt.use_pretrained:
if model in ['alexnet']:
net.initialize(mx.init.Normal())
else:
net.initialize(mx.init.Xavier(magnitude=2))
net.cast(opt.dtype)
return net
示例2: test_models
# 需要导入模块: from mxnet.gluon.model_zoo import vision [as 别名]
# 或者: from mxnet.gluon.model_zoo.vision import get_model [as 别名]
def test_models():
all_models = ['resnet18_v1', 'resnet34_v1', 'resnet50_v1', 'resnet101_v1', 'resnet152_v1',
'resnet18_v2', 'resnet34_v2', 'resnet50_v2', 'resnet101_v2', 'resnet152_v2',
'vgg11', 'vgg13', 'vgg16', 'vgg19',
'vgg11_bn', 'vgg13_bn', 'vgg16_bn', 'vgg19_bn',
'alexnet', 'inceptionv3',
'densenet121', 'densenet161', 'densenet169', 'densenet201',
'squeezenet1.0', 'squeezenet1.1',
'mobilenet1.0', 'mobilenet0.75', 'mobilenet0.5', 'mobilenet0.25',
'mobilenetv2_1.0', 'mobilenetv2_0.75', 'mobilenetv2_0.5', 'mobilenetv2_0.25']
pretrained_to_test = set(['squeezenet1.1'])
for model_name in all_models:
test_pretrain = model_name in pretrained_to_test
model = get_model(model_name, pretrained=test_pretrain, root='model/')
data_shape = (2, 3, 224, 224) if 'inception' not in model_name else (2, 3, 299, 299)
eprint('testing forward for %s' % model_name)
print(model)
if not test_pretrain:
model.collect_params().initialize()
model(mx.nd.random.uniform(shape=data_shape)).wait_to_read()
示例3: get_symbol
# 需要导入模块: from mxnet.gluon.model_zoo import vision [as 别名]
# 或者: from mxnet.gluon.model_zoo.vision import get_model [as 别名]
def get_symbol(network, batch_size, dtype):
image_shape = (3,299,299) if network in ['inception-v3', 'inception-v4'] else (3,224,224)
num_layers = 0
if network == 'inception-resnet-v2':
network = network
elif 'resnet' in network:
num_layers = int(network.split('-')[1])
network = network.split('-')[0]
if 'vgg' in network:
num_layers = int(network.split('-')[1])
network = 'vgg'
if network in ['densenet121', 'squeezenet1.1']:
sym = models.get_model(network)
sym.hybridize()
data = mx.sym.var('data')
sym = sym(data)
sym = mx.sym.SoftmaxOutput(sym, name='softmax')
else:
net = import_module('symbols.'+network)
sym = net.get_symbol(num_classes=1000,
image_shape=','.join([str(i) for i in image_shape]),
num_layers=num_layers,
dtype=dtype)
return (sym, [('data', (batch_size,)+image_shape)])
示例4: build_module
# 需要导入模块: from mxnet.gluon.model_zoo import vision [as 别名]
# 或者: from mxnet.gluon.model_zoo.vision import get_model [as 别名]
def build_module(opts):
dshape = (1, 3, 224, 224)
from mxnet.gluon.model_zoo.vision import get_model
block = get_model('mobilenet0.25', pretrained=True)
shape_dict = {'data': dshape}
mod, params = relay.frontend.from_mxnet(block, shape_dict)
func = mod["main"]
func = relay.Function(func.params, relay.nn.softmax(func.body), None, func.type_params, func.attrs)
with tvm.transform.PassContext(opt_level=3):
graph, lib, params = relay.build(
func, 'llvm --system-lib', params=params)
build_dir = os.path.abspath(opts.out_dir)
if not os.path.isdir(build_dir):
os.makedirs(build_dir)
lib.save(os.path.join(build_dir, 'model.o'))
with open(os.path.join(build_dir, 'graph.json'), 'w') as f_graph_json:
f_graph_json.write(graph)
with open(os.path.join(build_dir, 'params.bin'), 'wb') as f_params:
f_params.write(relay.save_param_dict(params))
示例5: get_model
# 需要导入模块: from mxnet.gluon.model_zoo import vision [as 别名]
# 或者: from mxnet.gluon.model_zoo.vision import get_model [as 别名]
def get_model(model, ctx, opt):
"""Model initialization."""
kwargs = {'ctx': ctx, 'pretrained': opt.use_pretrained, 'classes': classes}
if model.startswith('resnet'):
kwargs['thumbnail'] = opt.use_thumbnail
elif model.startswith('vgg'):
kwargs['batch_norm'] = opt.batch_norm
net = models.get_model(model, **kwargs)
if opt.resume:
net.load_params(opt.resume)
elif not opt.use_pretrained:
if model in ['alexnet']:
net.initialize(mx.init.Normal())
else:
net.initialize(mx.init.Xavier(magnitude=2))
net.cast(opt.dtype)
return net
示例6: get_nn_model
# 需要导入模块: from mxnet.gluon.model_zoo import vision [as 别名]
# 或者: from mxnet.gluon.model_zoo.vision import get_model [as 别名]
def get_nn_model(name):
if "densenet" in name:
return get_model(name, dropout=0)
else:
return get_model(name)
# Seed 1521019752 produced a failure on the Py2 MKLDNN-GPU CI runner
# on 2/16/2018 that was not reproducible. Problem could be timing related or
# based on non-deterministic algo selection.
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:11,代码来源:test_gluon_model_zoo_gpu.py
示例7: get_network
# 需要导入模块: from mxnet.gluon.model_zoo import vision [as 别名]
# 或者: from mxnet.gluon.model_zoo.vision import get_model [as 别名]
def get_network(name, batch_size):
"""Get the symbol definition and random weight of a network"""
input_shape = (batch_size, 3, 224, 224)
output_shape = (batch_size, 1000)
if "resnet" in name:
n_layer = int(name.split('-')[1])
net, params = relay.testing.resnet.get_workload(num_layers=n_layer, batch_size=batch_size, dtype=dtype)
elif "vgg" in name:
n_layer = int(name.split('-')[1])
net, params = relay.testing.vgg.get_workload(num_layers=n_layer, batch_size=batch_size, dtype=dtype)
elif name == 'mobilenet':
net, params = relay.testing.mobilenet.get_workload(batch_size=batch_size, dtype=dtype)
elif name == 'squeezenet_v1.1':
net, params = relay.testing.squeezenet.get_workload(batch_size=batch_size, version='1.1', dtype=dtype)
elif name == 'inception_v3':
input_shape = (1, 3, 299, 299)
net, params = relay.testing.inception_v3.get_workload(batch_size=batch_size, dtype=dtype)
elif name == 'mxnet':
# an example for mxnet model
from mxnet.gluon.model_zoo.vision import get_model
block = get_model('resnet18_v1', pretrained=True)
net, params = relay.frontend.from_mxnet(block, shape={'data': input_shape}, dtype=dtype)
net = relay.Function(net.params, relay.nn.softmax(net.body), None, net.type_params, net.attrs)
else:
raise ValueError("Unsupported network: " + name)
return net, params, input_shape, output_shape
###########################################
# Set Tuning Options
# ------------------
# Before tuning, we apply some configurations.
#### DEVICE CONFIG ####
示例8: get_network
# 需要导入模块: from mxnet.gluon.model_zoo import vision [as 别名]
# 或者: from mxnet.gluon.model_zoo.vision import get_model [as 别名]
def get_network(name, batch_size):
"""Get the symbol definition and random weight of a network"""
input_shape = (batch_size, 3, 224, 224)
output_shape = (batch_size, 1000)
if "resnet" in name:
n_layer = int(name.split('-')[1])
net, params = relay.testing.resnet.get_workload(num_layers=n_layer, batch_size=batch_size, dtype=dtype)
elif "vgg" in name:
n_layer = int(name.split('-')[1])
net, params = relay.testing.vgg.get_workload(num_layers=n_layer, batch_size=batch_size, dtype=dtype)
elif name == 'mobilenet':
net, params = relay.testing.mobilenet.get_workload(batch_size=batch_size, dtype=dtype)
elif name == 'squeezenet_v1.1':
net, params = relay.testing.squeezenet.get_workload(batch_size=batch_size, version='1.1', dtype=dtype)
elif name == 'inception_v3':
input_shape = (1, 3, 299, 299)
net, params = relay.testing.inception_v3.get_workload(batch_size=batch_size, dtype=dtype)
elif name == 'mxnet':
# an example for mxnet model
from mxnet.gluon.model_zoo.vision import get_model
block = get_model('resnet18_v1', pretrained=True)
net, params = relay.frontend.from_mxnet(block, shape={'data': input_shape}, dtype=dtype)
net = relay.Function(net.params, relay.nn.softmax(net.body), None, net.type_params, net.attrs)
else:
raise ValueError("Unsupported network: " + name)
return net, params, input_shape, output_shape
# Replace "llvm" with the correct target of your cpu.
# For example, for AWS EC2 c5 instance with Intel Xeon
# Platinum 8000 series, the target should be "llvm -mcpu=skylake-avx512".
# For AWS EC2 c4 instance with Intel Xeon E5-2666 v3, it should be
# "llvm -mcpu=core-avx2".
示例9: load_mxnet_resnet
# 需要导入模块: from mxnet.gluon.model_zoo import vision [as 别名]
# 或者: from mxnet.gluon.model_zoo.vision import get_model [as 别名]
def load_mxnet_resnet():
"""Load a pretrained resnet model from MXNet and transform that into NNVM
format.
Returns
-------
net : nnvm.Symbol
The loaded resnet computation graph.
params : dict[str -> NDArray]
The pretrained model parameters.
data_shape: tuple
The shape of the input tensor (an image).
out_shape: tuple
The shape of the output tensor (probability of all classes).
"""
print("Loading pretrained resnet model from MXNet...")
# Download a pre-trained mxnet resnet18_v1 model.
from mxnet.gluon.model_zoo.vision import get_model
block = get_model('resnet18_v1', pretrained=True)
# Transform the mxnet model into NNVM.
# We want a probability so add a softmax operator.
sym, params = nnvm.frontend.from_mxnet(block)
sym = nnvm.sym.softmax(sym)
print("- Model loaded!")
return sym, params, (1, 3, 224, 224), (1, 1000)
示例10: get_workload
# 需要导入模块: from mxnet.gluon.model_zoo import vision [as 别名]
# 或者: from mxnet.gluon.model_zoo.vision import get_model [as 别名]
def get_workload(batch_size, num_classes=1000, num_layers=121, dtype="float32"):
"""Get benchmark workload for mobilenet
Parameters
----------
batch_size : int
The batch size used in the model
num_classes : int, optional
Number of classes
num_layers : int, optional
The number of layers
dtype : str, optional
The data type
Returns
-------
net : nnvm.Symbol
The computational graph
params : dict of str to NDArray
The parameters.
"""
import mxnet as mx
from mxnet.gluon.model_zoo.vision import get_model
image_shape = (1, 3, 224, 224)
block = get_model('densenet%d' % num_layers, classes=num_classes, pretrained=False)
data = mx.sym.Variable('data')
sym = block(data)
sym = mx.sym.SoftmaxOutput(sym)
net = _from_mxnet_impl(sym, {})
return create_workload(net, batch_size, image_shape[1:], dtype)
示例11: get_network
# 需要导入模块: from mxnet.gluon.model_zoo import vision [as 别名]
# 或者: from mxnet.gluon.model_zoo.vision import get_model [as 别名]
def get_network(name, batch_size):
"""Get the symbol definition and random weight of a network"""
input_shape = (batch_size, 3, 224, 224)
output_shape = (batch_size, 1000)
if "resnet" in name:
n_layer = int(name.split('-')[1])
mod, params = relay.testing.resnet.get_workload(num_layers=n_layer, batch_size=batch_size, dtype=dtype)
elif "vgg" in name:
n_layer = int(name.split('-')[1])
mod, params = relay.testing.vgg.get_workload(num_layers=n_layer, batch_size=batch_size, dtype=dtype)
elif name == 'mobilenet':
mod, params = relay.testing.mobilenet.get_workload(batch_size=batch_size, dtype=dtype)
elif name == 'squeezenet_v1.1':
mod, params = relay.testing.squeezenet.get_workload(batch_size=batch_size, version='1.1', dtype=dtype)
elif name == 'inception_v3':
input_shape = (1, 3, 299, 299)
mod, params = relay.testing.inception_v3.get_workload(batch_size=batch_size, dtype=dtype)
elif name == 'mxnet':
# an example for mxnet model
from mxnet.gluon.model_zoo.vision import get_model
block = get_model('resnet18_v1', pretrained=True)
mod, params = relay.frontend.from_mxnet(block, shape={input_name: input_shape}, dtype=dtype)
net = mod["main"]
net = relay.Function(net.params, relay.nn.softmax(net.body), None, net.type_params, net.attrs)
mod = tvm.IRModule.from_expr(net)
else:
raise ValueError("Unsupported network: " + name)
return mod, params, input_shape, output_shape
# Replace "llvm" with the correct target of your CPU.
# For example, for AWS EC2 c5 instance with Intel Xeon
# Platinum 8000 series, the target should be "llvm -mcpu=skylake-avx512".
# For AWS EC2 c4 instance with Intel Xeon E5-2666 v3, it should be
# "llvm -mcpu=core-avx2".
示例12: get_network
# 需要导入模块: from mxnet.gluon.model_zoo import vision [as 别名]
# 或者: from mxnet.gluon.model_zoo.vision import get_model [as 别名]
def get_network(name, batch_size):
"""Get the symbol definition and random weight of a network"""
input_shape = (batch_size, 3, 224, 224)
output_shape = (batch_size, 1000)
if "resnet" in name:
n_layer = int(name.split('-')[1])
mod, params = relay.testing.resnet.get_workload(num_layers=n_layer, batch_size=batch_size, dtype=dtype)
elif "vgg" in name:
n_layer = int(name.split('-')[1])
mod, params = relay.testing.vgg.get_workload(num_layers=n_layer, batch_size=batch_size, dtype=dtype)
elif name == 'mobilenet':
mod, params = relay.testing.mobilenet.get_workload(batch_size=batch_size, dtype=dtype)
elif name == 'squeezenet_v1.1':
mod, params = relay.testing.squeezenet.get_workload(batch_size=batch_size, version='1.1', dtype=dtype)
elif name == 'inception_v3':
input_shape = (1, 3, 299, 299)
mod, params = relay.testing.inception_v3.get_workload(batch_size=batch_size, dtype=dtype)
elif name == 'mxnet':
# an example for mxnet model
from mxnet.gluon.model_zoo.vision import get_model
block = get_model('resnet18_v1', pretrained=True)
mod, params = relay.frontend.from_mxnet(block, shape={'data': input_shape}, dtype=dtype)
net = mod["main"]
net = relay.Function(net.params, relay.nn.softmax(net.body), None, net.type_params, net.attrs)
mod = tvm.IRModule.from_expr(net)
else:
raise ValueError("Unsupported network: " + name)
return mod, params, input_shape, output_shape
###########################################
# Set Tuning Options
# ------------------
# Before tuning, we apply some configurations.
#### DEVICE CONFIG ####
示例13: build
# 需要导入模块: from mxnet.gluon.model_zoo import vision [as 别名]
# 或者: from mxnet.gluon.model_zoo.vision import get_model [as 别名]
def build(target_dir):
""" Compiles resnet18 with TVM"""
deploy_lib = osp.join(target_dir, 'deploy_lib.o')
if osp.exists(deploy_lib):
return
if args.pretrained:
# needs mxnet installed
from mxnet.gluon.model_zoo.vision import get_model
# if `--pretrained` is enabled, it downloads a pretrained
# resnet18 trained on imagenet1k dataset for image classification task
block = get_model('resnet18_v1', pretrained=True)
net, params = relay.frontend.from_mxnet(block, {"data": data_shape})
# we want a probability so add a softmax operator
net = relay.Function(net.params, relay.nn.softmax(net.body),
None, net.type_params, net.attrs)
else:
# use random weights from relay.testing
net, params = relay.testing.resnet.get_workload(
num_layers=18, batch_size=batch_size, image_shape=image_shape)
# compile the model
with tvm.transform.PassContext(opt_level=opt_level):
graph, lib, params = relay.build_module.build(net, target, params=params)
# save the model artifacts
lib.save(deploy_lib)
cc.create_shared(osp.join(target_dir, "deploy_lib.so"),
[osp.join(target_dir, "deploy_lib.o")])
with open(osp.join(target_dir, "deploy_graph.json"), "w") as fo:
fo.write(graph)
with open(osp.join(target_dir,"deploy_param.params"), "wb") as fo:
fo.write(relay.save_param_dict(params))
示例14: compile_network
# 需要导入模块: from mxnet.gluon.model_zoo import vision [as 别名]
# 或者: from mxnet.gluon.model_zoo.vision import get_model [as 别名]
def compile_network(opt, env, target):
# Populate the shape and data type dictionary
dtype_dict = {"data": 'float32'}
shape_dict = {"data": (env.BATCH, 3, 224, 224)}
# Get off the shelf gluon model, and convert to relay
gluon_model = vision.get_model(opt.model, pretrained=True)
mod, params = relay.frontend.from_mxnet(gluon_model, shape_dict)
# Update shape and type dictionary
shape_dict.update({k: v.shape for k, v in params.items()})
dtype_dict.update({k: str(v.dtype) for k, v in params.items()})
# Perform quantization in Relay
# Note: We set opt_level to 3 in order to fold batch norm
with tvm.transform.PassContext(opt_level=3):
with relay.quantize.qconfig(global_scale=8.0,
skip_conv_layers=[0]):
relay_prog = relay.quantize.quantize(mod["main"], params=params)
# Perform graph packing and constant folding for VTA target
if target.device_name == "vta":
assert env.BLOCK_IN == env.BLOCK_OUT
relay_prog = graph_pack(
relay_prog,
env.BATCH,
env.BLOCK_OUT,
env.WGT_WIDTH,
start_name=opt.start_name,
stop_name=opt.stop_name)
return relay_prog, params
示例15: get_model
# 需要导入模块: from mxnet.gluon.model_zoo import vision [as 别名]
# 或者: from mxnet.gluon.model_zoo.vision import get_model [as 别名]
def get_model(model_name, batch_size=1):
if model_name == 'resnet18_v1':
import mxnet as mx
from mxnet import gluon
from mxnet.gluon.model_zoo import vision
gluon_model = vision.get_model(model_name, pretrained=True)
img_size = 224
data_shape = (batch_size, 3, img_size, img_size)
net, params = relay.frontend.from_mxnet(gluon_model, {"data": data_shape})
return (net, params)
elif model_name == 'mobilenet_v2':
import keras
from keras.applications.mobilenet_v2 import MobileNetV2
keras.backend.clear_session() # Destroys the current TF graph and creates a new one.
weights_url = ''.join(['https://github.com/JonathanCMitchell/',
'mobilenet_v2_keras/releases/download/v1.1/',
'mobilenet_v2_weights_tf_dim_ordering_tf_kernels_0.5_224.h5'])
weights_file = 'mobilenet_v2_weights.h5'
weights_path = download_testdata(weights_url, weights_file, module='keras')
keras_mobilenet_v2 = MobileNetV2(alpha=0.5, include_top=True, weights=None,
input_shape=(224, 224, 3), classes=1000)
keras_mobilenet_v2.load_weights(weights_path)
img_size = 224
data_shape = (batch_size, 3, img_size, img_size)
mod, params = relay.frontend.from_keras(keras_mobilenet_v2, {'input_1': data_shape})
return (mod, params)