本文整理汇总了Python中mxnet.gluon.block.HybridBlock方法的典型用法代码示例。如果您正苦于以下问题:Python block.HybridBlock方法的具体用法?Python block.HybridBlock怎么用?Python block.HybridBlock使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mxnet.gluon.block
的用法示例。
在下文中一共展示了block.HybridBlock方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: oth_alpha_pose_resnet101_v1b_coco
# 需要导入模块: from mxnet.gluon import block [as 别名]
# 或者: from mxnet.gluon.block import HybridBlock [as 别名]
def oth_alpha_pose_resnet101_v1b_coco(pretrained=False, **kwargs):
r""" ResNet-101 backbone model from AlphaPose
Parameters
----------
num_gpus : int
Number of usable GPUs.
Returns
-------
mxnet.gluon.HybridBlock
The AlphaPose network.
"""
norm_layer = mx.gluon.nn.BatchNorm
norm_kwargs = {'use_global_stats': False}
return get_alphapose(
name='resnet101_v1b', dataset='coco',
num_joints=17, norm_layer=norm_layer,
norm_kwargs=norm_kwargs, pretrained=pretrained, **kwargs)
示例2: get_dla
# 需要导入模块: from mxnet.gluon import block [as 别名]
# 或者: from mxnet.gluon.block import HybridBlock [as 别名]
def get_dla(layers, pretrained=False, ctx=mx.cpu(),
root=os.path.join('~', '.mxnet', 'models'), **kwargs):
"""Get a center net instance.
Parameters
----------
name : str or int
Layers of the network.
pretrained : bool or str
Boolean value controls whether to load the default pretrained weights for model.
String value represents the hashtag for a certain version of pretrained weights.
ctx : mxnet.Context
Context such as mx.cpu(), mx.gpu(0).
root : str
Model weights storing path.
Returns
-------
HybridBlock
A DLA network.
"""
# pylint: disable=unused-variable
net = DLA(**kwargs)
if pretrained:
from .model_store import get_model_file
full_name = 'dla{}'.format(layers)
net.load_parameters(get_model_file(full_name, tag=pretrained, root=root),
ctx=ctx, ignore_extra=True)
from ..data import ImageNet1kAttr
attrib = ImageNet1kAttr()
net.synset = attrib.synset
net.classes = attrib.classes
net.classes_long = attrib.classes_long
return net
示例3: dla34
# 需要导入模块: from mxnet.gluon import block [as 别名]
# 或者: from mxnet.gluon.block import HybridBlock [as 别名]
def dla34(**kwargs):
"""DLA 34 layer network for image classification.
Returns
-------
HybridBlock
A DLA34 network.
"""
model = get_dla(34, levels=[1, 1, 1, 2, 2, 1],
channels=[16, 32, 64, 128, 256, 512],
block=BasicBlock, **kwargs)
return model
示例4: alpha_pose_resnet101_v1b_coco
# 需要导入模块: from mxnet.gluon import block [as 别名]
# 或者: from mxnet.gluon.block import HybridBlock [as 别名]
def alpha_pose_resnet101_v1b_coco(**kwargs):
r""" ResNet-101 backbone model from AlphaPose
Parameters
----------
num_gpus : int
Number of usable GPUs.
Returns
-------
mxnet.gluon.HybridBlock
The AlphaPose network.
"""
from ...data import COCOKeyPoints
keypoints = COCOKeyPoints.KEYPOINTS
num_gpus = kwargs.pop('num_gpus', None)
if num_gpus is not None and int(num_gpus) > 1:
norm_layer = mx.gluon.contrib.nn.SyncBatchNorm
norm_kwargs = {'use_global_stats': False, 'num_devices': int(num_gpus)}
else:
norm_layer = mx.gluon.nn.BatchNorm
norm_kwargs = {'use_global_stats': False}
return get_alphapose(
name='resnet101_v1b', dataset='coco',
num_joints=len(keypoints), norm_layer=norm_layer,
norm_kwargs=norm_kwargs, **kwargs)
示例5: get_Siam_RPN
# 需要导入模块: from mxnet.gluon import block [as 别名]
# 或者: from mxnet.gluon.block import HybridBlock [as 别名]
def get_Siam_RPN(base_name, bz=1, is_train=False, pretrained=False, ctx=mx.cpu(0),
root='~/.mxnet/models', **kwargs):
"""get Siam_RPN net and get pretrained model if have pretrained
Parameters
----------
base_name : str
Backbone model name
bz : int
batch size for train, bz = 1 if test
is_train : str
is_train is True if train, False if test
pretrained : bool or str
Boolean value controls whether to load the default pretrained weights for model.
String value represents the hashtag for a certain version of pretrained weights.
ctx : mxnet.Context
Context such as mx.cpu(), mx.gpu(0).
root : str
Model weights storing path.
Returns
-------
HybridBlock
A SiamRPN Tracking network.
"""
net = SiamRPN(bz=bz, is_train=is_train, ctx=ctx)
if pretrained:
from gluoncv.model_zoo.model_store import get_model_file
net.load_parameters(get_model_file('siamrpn_%s'%(base_name),
tag=pretrained, root=root), ctx=ctx)
return net
示例6: get_alphapose
# 需要导入模块: from mxnet.gluon import block [as 别名]
# 或者: from mxnet.gluon.block import HybridBlock [as 别名]
def get_alphapose(name, dataset, num_joints, pretrained=False,
pretrained_base=True, ctx=mx.cpu(),
norm_layer=nn.BatchNorm, norm_kwargs=None,
root=os.path.join('~', '.mxnet', 'models'), **kwargs):
r"""Utility function to return AlphaPose networks.
Parameters
----------
name : str
Model name.
dataset : str
The name of dataset.
pretrained : bool or str
Boolean value controls whether to load the default pretrained weights for model.
String value represents the hashtag for a certain version of pretrained weights.
ctx : mxnet.Context
Context such as mx.cpu(), mx.gpu(0).
root : str
Model weights storing path.
Returns
-------
mxnet.gluon.HybridBlock
The AlphaPose network.
"""
if norm_kwargs is None:
norm_kwargs = {}
preact = FastSEResNet(name, norm_layer=norm_layer, **norm_kwargs)
if not pretrained and pretrained_base:
from ..model_zoo import get_model
base_network = get_model(name, pretrained=True, root=root)
_try_load_parameters(self=base_network, model=base_network)
net = AlphaPose(preact, num_joints, **kwargs)
if pretrained:
from ..model_store import get_model_file
full_name = '_'.join(('alpha_pose', name, dataset))
net.load_parameters(get_model_file(full_name, tag=pretrained, root=root))
else:
import warnings
with warnings.catch_warnings(record=True):
warnings.simplefilter("always")
net.collect_params().initialize()
net.collect_params().reset_ctx(ctx)
return net
示例7: get_alphapose
# 需要导入模块: from mxnet.gluon import block [as 别名]
# 或者: from mxnet.gluon.block import HybridBlock [as 别名]
def get_alphapose(name, dataset, num_joints, pretrained=False,
pretrained_base=False, ctx=mx.cpu(),
norm_layer=nn.BatchNorm, norm_kwargs=None,
root=os.path.join('~', '.mxnet', 'models'), **kwargs):
r"""Utility function to return AlphaPose networks.
Parameters
----------
name : str
Model name.
dataset : str
The name of dataset.
pretrained : bool or str
Boolean value controls whether to load the default pretrained weights for model.
String value represents the hashtag for a certain version of pretrained weights.
ctx : mxnet.Context
Context such as mx.cpu(), mx.gpu(0).
root : str
Model weights storing path.
Returns
-------
mxnet.gluon.HybridBlock
The AlphaPose network.
"""
if norm_kwargs is None:
norm_kwargs = {}
preact = FastSEResNet(name, norm_layer=norm_layer, **norm_kwargs)
if not pretrained and pretrained_base:
from gluoncv.model_zoo import get_model
base_network = get_model(name, pretrained=True, root=root)
_try_load_parameters(self=base_network, model=base_network)
net = AlphaPose(preact, num_joints, **kwargs)
if pretrained:
from gluoncv.model_zoo.model_store import get_model_file
full_name = '_'.join(('alpha_pose', name, dataset))
net.load_parameters(get_model_file(full_name, tag=pretrained, root=root))
else:
import warnings
with warnings.catch_warnings(record=True):
warnings.simplefilter("always")
net.collect_params().initialize()
net.collect_params().reset_ctx(ctx)
return net