本文整理汇总了Python中mxnet.ctx方法的典型用法代码示例。如果您正苦于以下问题:Python mxnet.ctx方法的具体用法?Python mxnet.ctx怎么用?Python mxnet.ctx使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mxnet
的用法示例。
在下文中一共展示了mxnet.ctx方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: run_images
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import ctx [as 别名]
def run_images(args,ctx):
# parse image list
image_list = [i.strip() for i in args.images.split(',')]
assert len(image_list) > 0, "No valid image specified to detect"
network = None if args.deploy_net else args.network
class_names = parse_class_names(args.class_names)
data_shape = parse_data_shape(args.data_shape)
if args.prefix.endswith('_'):
prefix = args.prefix + args.network + '_' + str(data_shape[0])
else:
prefix = args.prefix
detector = get_detector(network, prefix, args.epoch,
data_shape,
(args.mean_r, args.mean_g, args.mean_b),
ctx, len(class_names), args.nms_thresh, args.force_nms)
# run detection
detector.detect_and_visualize(image_list, args.dir, args.extension,
class_names, args.thresh, args.show_timer)
示例2: __init__
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import ctx [as 别名]
def __init__(self, symbol, model_prefix, epoch, data_shape, mean_pixels, \
batch_size=1, ctx=None):
self.ctx = ctx
if self.ctx is None:
self.ctx = mx.cpu()
load_symbol, args, auxs = mx.model.load_checkpoint(model_prefix, epoch)
if symbol is None:
symbol = load_symbol
self.mod = mx.mod.Module(symbol, label_names=None, context=self.ctx)
if not isinstance(data_shape, tuple):
data_shape = (data_shape, data_shape)
self.data_shape = data_shape
self.mod.bind(data_shapes=[('data', (batch_size, 3, data_shape[0], data_shape[1]))])
self.mod.set_params(args, auxs)
self.mean_pixels = mean_pixels
self.mean_pixels_nd = mx.nd.array(mean_pixels).reshape((3,1,1))
示例3: get_detector
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import ctx [as 别名]
def get_detector(net, prefix, epoch, data_shape, mean_pixels, ctx, num_class,
nms_thresh=0.5, force_nms=True, nms_topk=400):
"""
wrapper for initialize a detector
Parameters:
----------
net : str
test network name
prefix : str
load model prefix
epoch : int
load model epoch
data_shape : int
resize image shape
mean_pixels : tuple (float, float, float)
mean pixel values (R, G, B)
ctx : mx.ctx
running context, mx.cpu() or mx.gpu(?)
num_class : int
number of classes
nms_thresh : float
non-maximum suppression threshold
force_nms : bool
force suppress different categories
"""
if net is not None:
if isinstance(data_shape, tuple):
data_shape = data_shape[0]
net = get_symbol(net, data_shape, num_classes=num_class, nms_thresh=nms_thresh,
force_nms=force_nms, nms_topk=nms_topk)
detector = Detector(net, prefix, epoch, data_shape, mean_pixels, ctx=ctx)
return detector
示例4: run_camera
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import ctx [as 别名]
def run_camera(args,ctx):
assert args.batch_size == 1, "only batch size of 1 is supported"
logging.info("Detection threshold is {}".format(args.thresh))
iter = CameraIterator(frame_resize=parse_frame_resize(args.frame_resize))
class_names = parse_class_names(args.class_names)
mean_pixels = (args.mean_r, args.mean_g, args.mean_b)
data_shape = int(args.data_shape)
batch_size = int(args.batch_size)
detector = Detector(
get_symbol(args.network, data_shape, num_classes=len(class_names)),
network_path(args.prefix, args.network, data_shape),
args.epoch,
data_shape,
mean_pixels,
batch_size,
ctx
)
for frame in iter:
logging.info("Frame info: shape %s type %s", frame.shape, frame.dtype)
logging.info("Generating batch")
data_batch = detector.create_batch(frame)
logging.info("Detecting objects")
detections_batch = detector.detect_batch(data_batch)
#detections = [mx.nd.array((1,1,0.2,0.2,0.4,0.4))]
detections = detections_batch[0]
logging.info("%d detections", len(detections))
for det in detections:
obj = det.asnumpy()
(klass, score, x0, y0, x1, y1) = obj
if score > args.thresh:
draw_detection(frame, obj, class_names)
cv2.imshow('frame', frame)
示例5: main
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import ctx [as 别名]
def main():
logging.getLogger().setLevel(logging.INFO)
logging.basicConfig(format='%(asctime)-15s %(message)s')
args = parse_args()
if args.cpu:
ctx = mx.cpu()
else:
ctx = mx.gpu(args.gpu_id)
if args.camera:
run_camera(args, ctx)
else:
run_images(args, ctx)
return 0
示例6: __init__
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import ctx [as 别名]
def __init__(self, args, num, dim, ctx):
self.gpu = args.gpu
self.args = args
self.trace = []
self.emb = nd.empty((num, dim), dtype=np.float32, ctx=ctx)
self.state_sum = nd.zeros((self.emb.shape[0]), dtype=np.float32, ctx=ctx)
self.state_step = 0
示例7: init
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import ctx [as 别名]
def init(self, emb_init):
"""Initializing the embeddings.
Parameters
----------
emb_init : float
The intial embedding range should be [-emb_init, emb_init].
"""
nd.random.uniform(-emb_init, emb_init,
shape=self.emb.shape, dtype=self.emb.dtype,
ctx=self.emb.context, out=self.emb)
示例8: update
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import ctx [as 别名]
def update(self, gpu_id=-1):
""" Update embeddings in a sparse manner
Sparse embeddings are updated in mini batches. we maintains gradient states for
each embedding so they can be updated separately.
Parameters
----------
gpu_id : int
Which gpu to accelerate the calculation. if -1 is provided, cpu is used.
"""
self.state_step += 1
for idx, data in self.trace:
grad = data.grad
clr = self.args.lr
#clr = self.args.lr / (1 + (self.state_step - 1) * group['lr_decay'])
# the update is non-linear so indices must be unique
grad_indices = idx
grad_values = grad
grad_sum = (grad_values * grad_values).mean(1)
ctx = self.state_sum.context
if ctx != grad_indices.context:
grad_indices = grad_indices.as_in_context(ctx)
if ctx != grad_sum.context:
grad_sum = grad_sum.as_in_context(ctx)
self.state_sum[grad_indices] += grad_sum
std = self.state_sum[grad_indices] # _sparse_mask
if gpu_id >= 0:
std = std.as_in_context(mx.gpu(gpu_id))
std_values = nd.expand_dims(nd.sqrt(std) + 1e-10, 1)
tmp = (-clr * grad_values / std_values)
if tmp.context != ctx:
tmp = tmp.as_in_context(ctx)
# TODO(zhengda) the overhead is here.
self.emb[grad_indices] = mx.nd.take(self.emb, grad_indices) + tmp
self.trace = []
示例9: __init__
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import ctx [as 别名]
def __init__(self, symbol, model_prefix, epoch, data_shape, mean_pixels, \
batch_size=1, ctx=None):
self.ctx = ctx
if self.ctx is None:
self.ctx = mx.cpu()
load_symbol, args, auxs = mx.model.load_checkpoint(model_prefix, epoch)
if symbol is None:
symbol = load_symbol
self.mod = mx.mod.Module(symbol, label_names=None, context=ctx)
if not isinstance(data_shape, tuple):
data_shape = (data_shape, data_shape)
self.data_shape = data_shape
self.mod.bind(data_shapes=[('data', (batch_size, 3, data_shape[0], data_shape[1]))])
self.mod.set_params(args, auxs)
self.mean_pixels = mean_pixels
示例10: get_detector
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import ctx [as 别名]
def get_detector(net, prefix, epoch, data_shape, mean_pixels, ctx,
nms_thresh=0.5, force_nms=True):
"""
wrapper for initialize a detector
Parameters:
----------
net : str
test network name
prefix : str
load model prefix
epoch : int
load model epoch
data_shape : int
resize image shape
mean_pixels : tuple (float, float, float)
mean pixel values (R, G, B)
ctx : mx.ctx
running context, mx.cpu() or mx.gpu(?)
force_nms : bool
force suppress different categories
"""
sys.path.append(os.path.join(os.getcwd(), 'symbol'))
if net is not None:
prefix = prefix + "_" + net.strip('_yolo') + '_' + str(data_shape)
net = importlib.import_module("symbol_" + net) \
.get_symbol(len(CLASSES), nms_thresh, force_nms)
detector = Detector(net, prefix, epoch, \
data_shape, mean_pixels, ctx=ctx)
return detector
示例11: __init__
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import ctx [as 别名]
def __init__(self, symbol, model_prefix, epoch, data_shape, mean_pixels, \
batch_size=1, ctx=None):
self.ctx = ctx
if self.ctx is None:
self.ctx = mx.cpu()
load_symbol, args, auxs = mx.model.load_checkpoint(model_prefix, epoch)
if symbol is None:
symbol = load_symbol
self.mod = mx.mod.Module(symbol, label_names=("yolo_output_label",), context=ctx)
self.data_shape = data_shape
self.mod.bind(data_shapes=[('data', (batch_size, 3, data_shape, data_shape))],
label_shapes=[('yolo_output_label', (batch_size, 2, 5))])
self.mod.set_params(args, auxs)
self.data_shape = data_shape
self.mean_pixels = mean_pixels
示例12: get_detector
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import ctx [as 别名]
def get_detector(net, prefix, epoch, data_shape, mean_pixels, ctx, num_class,
nms_thresh=0.5, force_nms=True, nms_topk=400):
"""
wrapper for initialize a detector
Parameters:
----------
net : str
test network name
prefix : str
load model prefix
epoch : int
load model epoch
data_shape : int
resize image shape
mean_pixels : tuple (float, float, float)
mean pixel values (R, G, B)
ctx : mx.ctx
running context, mx.cpu() or mx.gpu(?)
num_class : int
number of classes
nms_thresh : float
non-maximum suppression threshold
force_nms : bool
force suppress different categories
"""
if net is not None:
net = get_symbol(net, data_shape, num_classes=num_class, nms_thresh=nms_thresh,
force_nms=force_nms, nms_topk=nms_topk)
detector = Detector(net, prefix, epoch, data_shape, mean_pixels, ctx=ctx)
return detector
示例13: __init__
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import ctx [as 别名]
def __init__(self, symbol, model_prefix, epoch, data_shape, mean_pixels, \
batch_size=1, ctx=None):
self.ctx = ctx
if self.ctx is None:
self.ctx = mx.cpu()
load_symbol, args, auxs = mx.model.load_checkpoint(model_prefix, epoch)
if symbol is None:
symbol = load_symbol
self.mod = mx.mod.Module(symbol, label_names=None, context=ctx)
self.data_shape = data_shape
self.mod.bind(data_shapes=[('data', (batch_size, 3, data_shape, data_shape))])
self.mod.set_params(args, auxs)
self.data_shape = data_shape
self.mean_pixels = mean_pixels
示例14: __init__
# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import ctx [as 别名]
def __init__(self, symbol, model_prefix, epoch, data_shape, mean_pixels, \
batch_size=1, ctx=None):
self.ctx = ctx
if self.ctx is None:
self.ctx = mx.cpu()
load_symbol, args, auxs = mx.model.load_checkpoint(model_prefix, epoch)
if symbol is None:
symbol = load_symbol
self.mod = mx.mod.Module(symbol, label_names=None, context=self.ctx)
if not isinstance(data_shape, tuple):
data_shape = (data_shape, data_shape)
self.data_shape = data_shape
self.mod.bind(data_shapes=[('data', (batch_size, 3, data_shape[0], data_shape[1]))])
self.mod.set_params(args, auxs)
self.mean_pixels = mean_pixels