本文整理汇总了Python中mxnet.autograd.is_training方法的典型用法代码示例。如果您正苦于以下问题:Python autograd.is_training方法的具体用法?Python autograd.is_training怎么用?Python autograd.is_training使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mxnet.autograd
的用法示例。
在下文中一共展示了autograd.is_training方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: hybrid_forward
# 需要导入模块: from mxnet import autograd [as 别名]
# 或者: from mxnet.autograd import is_training [as 别名]
def hybrid_forward(self, F, x):
# pylint: disable=arguments-differ
"""Hybrid forward of center net"""
y = self.base_network(x)
out = [head(y) for head in self.heads]
out[0] = F.sigmoid(out[0])
if autograd.is_training():
out[0] = F.clip(out[0], 1e-4, 1 - 1e-4)
return tuple(out)
if self.flip_test:
y_flip = self.base_network(x.flip(axis=3))
out_flip = [head(y_flip) for head in self.heads]
out_flip[0] = F.sigmoid(out_flip[0])
out[0] = (out[0] + out_flip[0].flip(axis=3)) * 0.5
out[1] = (out[1] + out_flip[1].flip(axis=3)) * 0.5
heatmap = out[0]
keep = F.broadcast_equal(self.heatmap_nms(heatmap), heatmap)
results = self.decoder(keep * heatmap, out[1], out[2])
return results
示例2: hybrid_forward
# 需要导入模块: from mxnet import autograd [as 别名]
# 或者: from mxnet.autograd import is_training [as 别名]
def hybrid_forward(self, F, x):
# pylint: disable=arguments-differ
"""Hybrid forward of center net"""
y = self.base_network(x)
out = [head(y) for head in self.heads]
out[0] = F.sigmoid(out[0])
if autograd.is_training():
out[0] = F.clip(out[0], 1e-4, 1 - 1e-4)
return tuple(out)
if self.flip_test:
y_flip = self.base_network(x.flip(axis=3))
out_flip = [head(y_flip) for head in self.heads]
out_flip[0] = F.sigmoid(out_flip[0])
out[0] = (out[0] + out_flip[0].flip(axis=3)) * 0.5
out[1] = (out[1] + out_flip[1].flip(axis=3)) * 0.5
heatmap = out[0]
keep = F.broadcast_equal(self.heatmap_nms(heatmap), heatmap)
results = self.decoder(keep * heatmap, out[1], out[2])
a, b, c = results
a = a.expand_dims(2)
b = b.expand_dims(2)
results = F.concat(c, a, b, dim=2)
return results
示例3: hybrid_forward
# 需要导入模块: from mxnet import autograd [as 别名]
# 或者: from mxnet.autograd import is_training [as 别名]
def hybrid_forward(self, F, x):
y = self.backbone(x)
out = [head(y) for head in self.heads]
out[0] = F.sigmoid(out[0])
if autograd.is_training():
out[0] = F.clip(out[0], 1e-4, 1 - 1e-4)
return tuple(out)
heatmap = out[0]
keep = F.broadcast_equal(self.heatmap_nms(heatmap), heatmap)
results = self.decoder(keep * heatmap, out[1], out[2])
a, b, c = results
a = a.expand_dims(2)
b = b.expand_dims(2)
results = F.concat(c, a, b, dim=2)
return results
示例4: hybrid_forward
# 需要导入模块: from mxnet import autograd [as 别名]
# 或者: from mxnet.autograd import is_training [as 别名]
def hybrid_forward(self, F, x, img):
"""Forward RPN.
The behavior during traing and inference is different.
Parameters
----------
x : mxnet.nd.NDArray or mxnet.symbol
Feature tensor.
img : mxnet.nd.NDArray or mxnet.symbol
The original input image.
Returns
-------
(rpn_score, rpn_box)
Returns predicted scores and regions which are candidates of objects.
"""
anchors = self.anchor_generator(x)
x = self.conv1(x)
raw_rpn_scores = self.score(x).transpose(axes=(0, 2, 3, 1)).reshape((0, -1, 1))
rpn_scores = F.sigmoid(F.stop_gradient(raw_rpn_scores))
rpn_box_pred = self.loc(x).transpose(axes=(0, 2, 3, 1)).reshape((0, -1, 4))
rpn_score, rpn_box = self.region_proposaler(
anchors, rpn_scores, F.stop_gradient(rpn_box_pred), img)
if autograd.is_training():
# return raw predictions as well in training for bp
return rpn_score, rpn_box, raw_rpn_scores, rpn_box_pred, anchors
return rpn_score, rpn_box
示例5: hybrid_forward
# 需要导入模块: from mxnet import autograd [as 别名]
# 或者: from mxnet.autograd import is_training [as 别名]
def hybrid_forward(self, F, x, gamma, beta, running_mean, running_var):
"""Hybrid forward"""
if not autograd.is_training():
return F.BatchNorm(x, gamma, beta, running_mean, running_var, name='fwd',
**self._kwargs)
isum, isqu = F.SumSquare(x)
#isum = x.sum(axis=1, exclude=True)
#isqu = (x**2).sum(axis=1, exclude=True)
N = self.ndevices * x.shape[0] * x.shape[2] * x.shape[3]
allreduce = AllReduce(self._prefix)
osum, osqu = allreduce(isum, isqu)
# calc mean and std
mean = osum / N
sumvar = osqu - osum * osum / N
bias_var = sumvar / N
std = F.sqrt(F.maximum(bias_var, self.eps))
# update running mean and var
with autograd.pause():
unbias_var = sumvar / (N - 1)
self.updater(self.running_mean, self.running_var, mean, unbias_var,
self.momentum, x.context)
# update running mean and var
output = F.DecoupleBatchNorm(x, gamma, beta, mean, std)
return output
示例6: hybrid_forward
# 需要导入模块: from mxnet import autograd [as 别名]
# 或者: from mxnet.autograd import is_training [as 别名]
def hybrid_forward(self, F, x):
"""Hybrid forward"""
features = self.features(x)
cls_preds = [F.flatten(F.transpose(cp(feat), (0, 2, 3, 1)))
for feat, cp in zip(features, self.class_predictors)]
box_preds = [F.flatten(F.transpose(bp(feat), (0, 2, 3, 1)))
for feat, bp in zip(features, self.box_predictors)]
anchors = [F.reshape(ag(feat), shape=(1, -1))
for feat, ag in zip(features, self.anchor_generators)]
cls_preds = F.concat(*cls_preds, dim=1).reshape((0, -1, self.num_classes + 1))
box_preds = F.concat(*box_preds, dim=1).reshape((0, -1, 4))
anchors = F.concat(*anchors, dim=1).reshape((1, -1, 4))
if autograd.is_training():
return [cls_preds, box_preds, anchors]
bboxes = self.bbox_decoder(box_preds, anchors)
cls_ids, scores = self.cls_decoder(F.softmax(cls_preds, axis=-1))
results = []
for i in range(self.num_classes):
cls_id = cls_ids.slice_axis(axis=-1, begin=i, end=i+1)
score = scores.slice_axis(axis=-1, begin=i, end=i+1)
# per class results
per_result = F.concat(*[cls_id, score, bboxes], dim=-1)
results.append(per_result)
result = F.concat(*results, dim=1)
if self.nms_thresh > 0 and self.nms_thresh < 1:
result = F.contrib.box_nms(
result, overlap_thresh=self.nms_thresh, topk=self.nms_topk, valid_thresh=0.01,
id_index=0, score_index=1, coord_start=2, force_suppress=False)
if self.post_nms > 0:
result = result.slice_axis(axis=1, begin=0, end=self.post_nms)
ids = F.slice_axis(result, axis=2, begin=0, end=1)
scores = F.slice_axis(result, axis=2, begin=1, end=2)
bboxes = F.slice_axis(result, axis=2, begin=2, end=6)
return ids, scores, bboxes
示例7: hybrid_forward
# 需要导入模块: from mxnet import autograd [as 别名]
# 或者: from mxnet.autograd import is_training [as 别名]
def hybrid_forward(self, F, x, gtbox=None):
# Stuff predict
if autograd.is_training():
cls_pred, box_pred, mask_pred, rpn_box, samples, matches, \
raw_rpn_score, raw_rpn_box, anchors = \
super(PanopticFPN, self).hybrid_forward(F, x, gtbox)
seg_pred = self.seg_head(x)
return cls_pred, box_pred, mask_pred, seg_pred, rpn_box, samples, \
matches, raw_rpn_score, raw_rpn_box, anchors
else:
cls_ids, cls_scores, boxes, masks = \
super(PanopticFPN, self).hybrid_forward(F, x)
segms = self.seg_head(x)
return cls_ids, cls_scores, boxes, masks, segms
示例8: hybrid_forward
# 需要导入模块: from mxnet import autograd [as 别名]
# 或者: from mxnet.autograd import is_training [as 别名]
def hybrid_forward(self, F, x):
print('F: ', F)
print('x: ', x)
x = self.features(x)
x = self.deconv_layers(x)
ret = []
# 2dpose task -> 0: hm, 1: wh, 2: hps, 3: reg, 4: hm_hp, 5:hp_offset
for head in self.heads:
ret.append(self.__getattribute__(head)(x))
if autograd.is_training():
# during training, just need to return the tensor for computing loss
print("training mode")
#return [ret]
return ret
else:
# during inference, need to decode the output tensor into actual detections
# detections is composed of several things: detections = nd.concat(bboxes, scores, kps, clses, dim=2)
# detections = decode_centernet_pose(heat, wh, kps, reg, hm_hp, hp_offset, K=100)
print("inference mode")
#detections = symbolic_decode_centernet_pose(F, ret[0].sigmoid(), ret[1], ret[2], ret[3], ret[4].sigmoid(), ret[5], K=10)
detections = symbolic_decode_centernet_pose(F, ret[0].sigmoid(), ret[1], ret[2], K=10)
print("decode finished!")
detections.save("symbol-detections.json")
return detections
# Specification
示例9: add_batchid
# 需要导入模块: from mxnet import autograd [as 别名]
# 或者: from mxnet.autograd import is_training [as 别名]
def add_batchid(self, F, bbox):
num_roi = self._num_sample if autograd.is_training() else self._rpn_test_post_nms
with autograd.pause():
roi_batchid = F.arange(0, self._max_batch, repeat=num_roi)
# remove batch dim because ROIPooling require 2d input
roi = F.concat(*[roi_batchid.reshape((-1, 1)), bbox.reshape((-1, 4))], dim=-1)
roi = F.stop_gradient(roi)
return roi
示例10: hybrid_forward
# 需要导入模块: from mxnet import autograd [as 别名]
# 或者: from mxnet.autograd import is_training [as 别名]
def hybrid_forward(self, F, x):
"""Hybrid forward"""
features = self.features(x)
cls_preds = [F.flatten(F.transpose(cp(feat), (0, 2, 3, 1)))
for feat, cp in zip(features, self.class_predictors)]
box_preds = [F.flatten(F.transpose(bp(feat), (0, 2, 3, 1)))
for feat, bp in zip(features, self.box_predictors)]
anchors = [F.reshape(ag(feat), shape=(1, -1))
for feat, ag in zip(features, self.anchor_generators)]
cls_preds = F.concat(*cls_preds, dim=1).reshape((0, -1, self.num_classes))
box_preds = F.concat(*box_preds, dim=1).reshape((0, -1, 4))
anchors = F.concat(*anchors, dim=1).reshape((1, -1, 4))
if autograd.is_training():
return [cls_preds, box_preds, anchors]
bboxes = self.bbox_decoder(box_preds, anchors)
cls_ids, scores = self.cls_decoder(F.softmax(cls_preds, axis=-1))
results = []
for i in range(self.num_classes - 1):
cls_id = cls_ids.slice_axis(axis=-1, begin=i, end=i+1)
score = scores.slice_axis(axis=-1, begin=i, end=i+1)
# per class results
per_result = F.concat(*[cls_id, score, bboxes], dim=-1)
results.append(per_result)
result = F.concat(*results, dim=1)
if self.nms_thresh > 0 and self.nms_thresh < 1:
result = F.contrib.box_nms(
result, overlap_thresh=self.nms_thresh, topk=self.nms_topk, valid_thresh=0.01,
id_index=0, score_index=1, coord_start=2, force_suppress=False)
if self.post_nms > 0:
result = result.slice_axis(axis=1, begin=0, end=self.post_nms)
ids = F.slice_axis(result, axis=2, begin=0, end=1)
scores = F.slice_axis(result, axis=2, begin=1, end=2)
bboxes = F.slice_axis(result, axis=2, begin=2, end=6)
return ids, scores, bboxes
示例11: hybrid_forward
# 需要导入模块: from mxnet import autograd [as 别名]
# 或者: from mxnet.autograd import is_training [as 别名]
def hybrid_forward(self, F, x, anchors, offsets):
"""Hybrid Forward of YOLOV3Output layer.
Parameters
----------
F : mxnet.nd or mxnet.sym
`F` is mxnet.sym if hybridized or mxnet.nd if not.
x : mxnet.nd.NDArray
Input feature map.
anchors : mxnet.nd.NDArray
Anchors loaded from self, no need to supply.
offsets : mxnet.nd.NDArray
Offsets loaded from self, no need to supply.
Returns
-------
(tuple of) mxnet.nd.NDArray
During training, return (bbox, raw_box_centers, raw_box_scales, objness,
class_pred, anchors, offsets).
During inference, return detections.
"""
# prediction flat to (batch, pred per pixel, height * width)
pred = self.prediction(x).reshape((0, self._num_anchors * self._num_pred, -1))
# transpose to (batch, height * width, num_anchor, num_pred)
pred = pred.transpose(axes=(0, 2, 1)).reshape((0, -1, self._num_anchors, self._num_pred))
# components
raw_box_centers = pred.slice_axis(axis=-1, begin=0, end=2)
raw_box_scales = pred.slice_axis(axis=-1, begin=2, end=4)
objness = pred.slice_axis(axis=-1, begin=4, end=5)
class_pred = pred.slice_axis(axis=-1, begin=5, end=None)
# valid offsets, (1, 1, height, width, 2)
offsets = F.slice_like(offsets, x * 0, axes=(2, 3))
# reshape to (1, height*width, 1, 2)
offsets = offsets.reshape((1, -1, 1, 2))
box_centers = F.broadcast_add(F.sigmoid(raw_box_centers), offsets) * self._stride
box_scales = F.broadcast_mul(F.exp(raw_box_scales), anchors)
confidence = F.sigmoid(objness)
class_score = F.broadcast_mul(F.sigmoid(class_pred), confidence)
wh = box_scales / 2.0
bbox = F.concat(box_centers - wh, box_centers + wh, dim=-1)
if autograd.is_training():
# during training, we don't need to convert whole bunch of info to detection results
return (bbox.reshape((0, -1, 4)), raw_box_centers, raw_box_scales,
objness, class_pred, anchors, offsets)
# prediction per class
bboxes = F.tile(bbox, reps=(self._classes, 1, 1, 1, 1))
scores = F.transpose(class_score, axes=(3, 0, 1, 2)).expand_dims(axis=-1)
ids = F.broadcast_add(scores * 0, F.arange(0, self._classes).reshape((0, 1, 1, 1, 1)))
detections = F.concat(ids, scores, bboxes, dim=-1)
# reshape to (B, xx, 6)
detections = F.reshape(detections.transpose(axes=(1, 0, 2, 3, 4)), (0, -1, 6))
return detections
示例12: parallel_apply
# 需要导入模块: from mxnet import autograd [as 别名]
# 或者: from mxnet.autograd import is_training [as 别名]
def parallel_apply(module, inputs, kwargs_tup=None, sync=False):
"""Parallel applying model forward"""
if kwargs_tup is not None:
assert len(inputs) == len(kwargs_tup)
else:
kwargs_tup = ({},) * len(inputs)
lock = threading.Lock()
results = {}
def _worker(i, module, input, kwargs, results, is_recording, is_training, lock):
try:
if is_recording:
with autograd.record(is_training):
output = tuple_map(module(*input, **kwargs))
for out in output:
out.wait_to_read()
else:
output = tuple_map(module(*input, **kwargs))
for out in output:
out.wait_to_read()
with lock:
results[i] = output
except Exception as e:
with lock:
results[i] = e
is_training = autograd.is_training()
is_recording = autograd.is_recording()
threads = [threading.Thread(target=_worker,
args=(i, module, input, kwargs, results,
is_recording, is_training, lock),)
for i, (input, kwargs) in
enumerate(zip(inputs, kwargs_tup))]
if sync:
for thread in threads:
thread.start()
for thread in threads:
thread.join()
outputs = []
for i in range(len(inputs)):
output = results[i]
if isinstance(output, Exception):
raise output
outputs.append(output)
return tuple(outputs)
else:
outputs = [tuple_map(module(*input, **kwargs))
for (input, kwargs) in zip(inputs, kwargs_tup)]
return tuple(outputs)
示例13: criterion_parallel_apply
# 需要导入模块: from mxnet import autograd [as 别名]
# 或者: from mxnet.autograd import is_training [as 别名]
def criterion_parallel_apply(module, inputs, targets, kwargs_tup=None, sync=False):
"""Data Parallel Criterion"""
if kwargs_tup:
assert len(inputs) == len(kwargs_tup)
else:
kwargs_tup = ({},) * len(inputs)
lock = threading.Lock()
results = {}
def _worker(i, module, input, target, kwargs, results, is_recording, is_training, lock):
try:
if is_recording:
with autograd.record(is_training):
output = module(*(input + target), **kwargs)
output.wait_to_read()
else:
output = module(*(input + target), **kwargs)
output.wait_to_read()
with lock:
results[i] = output
except Exception as e:
with lock:
results[i] = e
is_training = bool(autograd.is_training())
is_recording = autograd.is_recording()
threads = [threading.Thread(target=_worker,
args=(i, module, input, target,
kwargs, results, is_recording, is_training, lock),)
for i, (input, target, kwargs) in
enumerate(zip(inputs, targets, kwargs_tup))]
if sync:
for thread in threads:
thread.start()
for thread in threads:
thread.join()
outputs = []
for i in range(len(inputs)):
output = results[i]
if isinstance(output, Exception):
raise output
outputs.append(output)
return tuple(outputs)
else:
outputs = [module(*(input + target), **kwargs) \
for (input, target, kwargs) in zip(inputs, targets, kwargs_tup)]
return tuple(outputs)
示例14: parallel_apply
# 需要导入模块: from mxnet import autograd [as 别名]
# 或者: from mxnet.autograd import is_training [as 别名]
def parallel_apply(module, inputs, kwargs_tup=None, sync=False):
"""Parallel applying model forward"""
if kwargs_tup is not None:
assert len(inputs) == len(kwargs_tup)
else:
kwargs_tup = ({},) * len(inputs)
lock = threading.Lock()
results = {}
def _worker(i, module, input, kwargs, results, is_recording, is_training, lock):
try:
if is_recording:
with autograd.record(is_training):
output = tuple_map(module(*input, **kwargs))
for out in output:
out.wait_to_read()
else:
output = tuple_map(module(*input, **kwargs))
for out in output:
out.wait_to_read()
with lock:
results[i] = output
except Exception as e:
with lock:
results[i] = e
is_training = autograd.is_training()
is_recording = autograd.is_recording()
threads = [threading.Thread(target=_worker,
args=(i, module, input, kwargs, results,
is_recording, is_training, lock),
)
for i, (input, kwargs) in
enumerate(zip(inputs, kwargs_tup))]
if sync:
for thread in threads:
thread.start()
for thread in threads:
thread.join()
outputs = []
for i in range(len(inputs)):
output = results[i]
if isinstance(output, Exception):
raise output
outputs.append(output)
return tuple(outputs)
else:
outputs = [tuple_map(module(*input, **kwargs))
for (input, kwargs) in zip(inputs, kwargs_tup)]
return tuple(outputs)
示例15: criterion_parallel_apply
# 需要导入模块: from mxnet import autograd [as 别名]
# 或者: from mxnet.autograd import is_training [as 别名]
def criterion_parallel_apply(module, inputs, targets, kwargs_tup=None, sync=False):
"""Data Parallel Criterion"""
if kwargs_tup:
assert len(inputs) == len(kwargs_tup)
else:
kwargs_tup = ({},) * len(inputs)
lock = threading.Lock()
results = {}
def _worker(i, module, input, target, kwargs, results, is_recording, is_training, lock):
try:
if is_recording:
with autograd.record(is_training):
output = module(*(input + target), **kwargs)
output.wait_to_read()
else:
output = module(*(input + target), **kwargs)
output.wait_to_read()
with lock:
results[i] = output
except Exception as e:
with lock:
results[i] = e
is_training = bool(autograd.is_training())
is_recording = autograd.is_recording()
threads = [threading.Thread(target=_worker,
args=(i, module, input, target,
kwargs, results, is_recording, is_training, lock),
)
for i, (input, target, kwargs) in
enumerate(zip(inputs, targets, kwargs_tup))]
if sync:
for thread in threads:
thread.start()
for thread in threads:
thread.join()
outputs = []
for i in range(len(inputs)):
output = results[i]
if isinstance(output, Exception):
raise output
outputs.append(output)
return tuple(outputs)
else:
outputs = [module(*(input + target), **kwargs) \
for (input, target, kwargs) in zip(inputs, targets, kwargs_tup)]
return tuple(outputs)