当前位置: 首页>>代码示例>>Python>>正文


Python mxnet.Symbol方法代码示例

本文整理汇总了Python中mxnet.Symbol方法的典型用法代码示例。如果您正苦于以下问题:Python mxnet.Symbol方法的具体用法?Python mxnet.Symbol怎么用?Python mxnet.Symbol使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mxnet的用法示例。


在下文中一共展示了mxnet.Symbol方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_symbol

# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import Symbol [as 别名]
def get_symbol(num_classes=20, nms_thresh=0.5, force_suppress=False,
               nms_topk=400, **kwargs):
    """
    Single-shot multi-box detection with VGG 16 layers ConvNet
    This is a modified version, with fc6/fc7 layers replaced by conv layers
    And the network is slightly smaller than original VGG 16 network
    This is the detection network

    Parameters:
    ----------
    num_classes: int
        number of object classes not including background
    nms_thresh : float
        threshold of overlap for non-maximum suppression
    force_suppress : boolean
        whether suppress different class objects
    nms_topk : int
        apply NMS to top K detections

    Returns:
    ----------
    mx.Symbol
    """
    net = get_symbol_train(num_classes)
    cls_preds = net.get_internals()["multibox_cls_pred_output"]
    loc_preds = net.get_internals()["multibox_loc_pred_output"]
    anchor_boxes = net.get_internals()["multibox_anchors_output"]

    cls_prob = mx.symbol.SoftmaxActivation(data=cls_preds, mode='channel', \
        name='cls_prob')
    out = mx.symbol.contrib.MultiBoxDetection(*[cls_prob, loc_preds, anchor_boxes], \
        name="detection", nms_threshold=nms_thresh, force_suppress=force_suppress,
        variances=(0.1, 0.1, 0.2, 0.2), nms_topk=nms_topk)
    return out 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:36,代码来源:legacy_vgg16_ssd_300.py

示例2: get_symbol

# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import Symbol [as 别名]
def get_symbol(num_classes=20, nms_thresh=0.5, force_suppress=False, nms_topk=400):
    """
    Single-shot multi-box detection with VGG 16 layers ConvNet
    This is a modified version, with fc6/fc7 layers replaced by conv layers
    And the network is slightly smaller than original VGG 16 network
    This is the detection network

    Parameters:
    ----------
    num_classes: int
        number of object classes not including background
    nms_thresh : float
        threshold of overlap for non-maximum suppression
    force_suppress : boolean
        whether suppress different class objects
    nms_topk : int
        apply NMS to top K detections

    Returns:
    ----------
    mx.Symbol
    """
    net = get_symbol_train(num_classes)
    cls_preds = net.get_internals()["multibox_cls_pred_output"]
    loc_preds = net.get_internals()["multibox_loc_pred_output"]
    anchor_boxes = net.get_internals()["multibox_anchors_output"]

    cls_prob = mx.symbol.SoftmaxActivation(data=cls_preds, mode='channel', \
        name='cls_prob')
    out = mx.symbol.contrib.MultiBoxDetection(*[cls_prob, loc_preds, anchor_boxes], \
        name="detection", nms_threshold=nms_thresh, force_suppress=force_suppress,
        variances=(0.1, 0.1, 0.2, 0.2), nms_topk=nms_topk)
    return out 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:35,代码来源:legacy_vgg16_ssd_512.py

示例3: get_symbol

# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import Symbol [as 别名]
def get_symbol(num_classes=20, nms_thresh=0.5, force_suppress=False, nms_topk=400):
    """
    Single-shot multi-box detection with VGG 16 layers ConvNet
    This is a modified version, with fc6/fc7 layers replaced by conv layers
    And the network is slightly smaller than original VGG 16 network
    This is the detection network

    Parameters:
    ----------
    num_classes: int
        number of object classes not including background
    nms_thresh : float
        threshold of overlap for non-maximum suppression
    force_suppress : boolean
        whether suppress different class objects
    nms_topk : int
        apply NMS to top K detections

    Returns:
    ----------
    mx.Symbol
    """
    net = get_symbol_train(num_classes)
    print 33333
    cls_preds = net.get_internals()["multibox_cls_pred_output"]
    loc_preds = net.get_internals()["multibox_loc_pred_output"]
    anchor_boxes = net.get_internals()["multibox_anchors_output"]
    cls_prob = mx.symbol.SoftmaxActivation(data=cls_preds, mode='channel', \
        name='cls_prob')
    out = mx.symbol.contrib.MultiBoxDetection(*[cls_prob, loc_preds, anchor_boxes], \
        name="detection", nms_threshold=nms_thresh, force_suppress=force_suppress,
        variances=(0.1, 0.1, 0.2, 0.2), nms_topk=nms_topk)
    return out 
开发者ID:MTCloudVision,项目名称:mxnet-dssd,代码行数:35,代码来源:legacy_vgg16_ssd_512.py

示例4: get_symbol

# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import Symbol [as 别名]
def get_symbol(num_classes=20, nms_thresh=0.5, force_suppress=False,
               nms_topk=400, **kwargs):
    """
    Single-shot multi-box detection with VGG 16 layers ConvNet
    This is a modified version, with fc6/fc7 layers replaced by conv layers
    And the network is slightly smaller than original VGG 16 network
    This is the detection network

    Parameters:
    ----------
    num_classes: int
        number of object classes not including background
    nms_thresh : float
        threshold of overlap for non-maximum suppression
    force_suppress : boolean
        whether suppress different class objects
    nms_topk : int
        apply NMS to top K detections

    Returns:
    ----------
    mx.Symbol
    """
    net = get_symbol_train(num_classes)
    cls_preds = net.get_internals()["multibox_cls_pred_output"]
    loc_preds = net.get_internals()["multibox_loc_pred_output"]
    anchor_boxes = net.get_internals()["multibox_anchors_output"]

    cls_prob = mx.symbol.SoftmaxActivation(data=cls_preds, mode='channel', \
        name='cls_prob')
    out = mx.contrib.symbol.MultiBoxDetection(*[cls_prob, loc_preds, anchor_boxes], \
        name="detection", nms_threshold=nms_thresh, force_suppress=force_suppress,
        variances=(0.1, 0.1, 0.2, 0.2), nms_topk=nms_topk)
    return out 
开发者ID:zhreshold,项目名称:mxnet-ssd,代码行数:36,代码来源:legacy_vgg16_ssd_300.py

示例5: get_symbol

# 需要导入模块: import mxnet [as 别名]
# 或者: from mxnet import Symbol [as 别名]
def get_symbol(num_classes=20, nms_thresh=0.5, force_suppress=False, nms_topk=400):
    """
    Single-shot multi-box detection with VGG 16 layers ConvNet
    This is a modified version, with fc6/fc7 layers replaced by conv layers
    And the network is slightly smaller than original VGG 16 network
    This is the detection network

    Parameters:
    ----------
    num_classes: int
        number of object classes not including background
    nms_thresh : float
        threshold of overlap for non-maximum suppression
    force_suppress : boolean
        whether suppress different class objects
    nms_topk : int
        apply NMS to top K detections

    Returns:
    ----------
    mx.Symbol
    """
    net = get_symbol_train(num_classes)
    cls_preds = net.get_internals()["multibox_cls_pred_output"]
    loc_preds = net.get_internals()["multibox_loc_pred_output"]
    anchor_boxes = net.get_internals()["multibox_anchors_output"]

    cls_prob = mx.symbol.SoftmaxActivation(data=cls_preds, mode='channel', \
        name='cls_prob')
    out = mx.contrib.symbol.MultiBoxDetection(*[cls_prob, loc_preds, anchor_boxes], \
        name="detection", nms_threshold=nms_thresh, force_suppress=force_suppress,
        variances=(0.1, 0.1, 0.2, 0.2), nms_topk=nms_topk)
    return out 
开发者ID:zhreshold,项目名称:mxnet-ssd,代码行数:35,代码来源:legacy_vgg16_ssd_512.py


注:本文中的mxnet.Symbol方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。