本文整理汇总了Python中multiprocessing.pool.terminate方法的典型用法代码示例。如果您正苦于以下问题:Python pool.terminate方法的具体用法?Python pool.terminate怎么用?Python pool.terminate使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类multiprocessing.pool
的用法示例。
在下文中一共展示了pool.terminate方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _close
# 需要导入模块: from multiprocessing import pool [as 别名]
# 或者: from multiprocessing.pool import terminate [as 别名]
def _close(self):
for pool in self._managed_pools:
pool.terminate()
for pool in self._managed_pools:
pool.join()
self._aliases.clear()
self._aliases_per_pool.clear()
self._managed_pools.clear()
示例2: scrape_with_timeout
# 需要导入模块: from multiprocessing import pool [as 别名]
# 或者: from multiprocessing.pool import terminate [as 别名]
def scrape_with_timeout(page):
pool = NDPool(processes=1)
async_result = pool.apply_async(scrape_page, (page,))
result = None
try:
result = async_result.get(timeout=600)
pool.close()
except TimeoutError:
logger.info(u'page scrape timed out: {}'.format(page))
pool.terminate()
pool.join()
return result
示例3: fit_pixel_multiprocess_nonlinear
# 需要导入模块: from multiprocessing import pool [as 别名]
# 或者: from multiprocessing.pool import terminate [as 别名]
def fit_pixel_multiprocess_nonlinear(data, x, param, reg_mat, use_snip=False):
"""
Multiprocess fit of experiment data.
Parameters
----------
data : array
3D data of experiment spectrum
param : dict
fitting parameters
Returns
-------
dict :
fitting values for all the elements
"""
num_processors_to_use = multiprocessing.cpu_count()
logger.info('cpu count: {}'.format(num_processors_to_use))
pool = multiprocessing.Pool(num_processors_to_use)
# fit_params = lmfit.Parameters()
# for i in range(reg_mat.shape[1]):
# fit_params.add('a'+str(i), value=1.0, min=0, vary=True)
result_pool = [pool.apply_async(fit_pixel_nonlinear_per_line,
(n, data[n, :, :], x,
param, reg_mat, use_snip))
for n in range(data.shape[0])]
results = []
for r in result_pool:
results.append(r.get())
pool.terminate()
pool.join()
return results
示例4: roi_sum_multi_files
# 需要导入模块: from multiprocessing import pool [as 别名]
# 或者: from multiprocessing.pool import terminate [as 别名]
def roi_sum_multi_files(dir_path, file_prefix,
start_i, end_i, element_dict,
interpath='entry/instrument/detector/data'):
"""
Fitting for multiple files with Multiprocessing.
Parameters
-----------
dir_path : str
file_prefix : str
start_i : int
start id of given file
end_i: int
end id of given file
element_dict : dict
dict of element with [low, high] bounds as values
interpath : str
path inside hdf5 file to fetch the data
Returns
-------
result : list
fitting result as list of dict
"""
num_processors_to_use = multiprocessing.cpu_count()
logger.info('cpu count: {}'.format(num_processors_to_use))
pool = multiprocessing.Pool(num_processors_to_use)
result_pool = [pool.apply_async(roi_sum_calculation,
(dir_path, file_prefix,
m, element_dict, interpath))
for m in range(start_i, end_i+1)]
results = []
for r in result_pool:
results.append(r.get())
pool.terminate()
pool.join()
return results
示例5: finalize
# 需要导入模块: from multiprocessing import pool [as 别名]
# 或者: from multiprocessing.pool import terminate [as 别名]
def finalize(self):
pool = self._pool
self._next = None
self._pool = None
if pool is not None:
pool.terminate()
示例6: ScopedPool
# 需要导入模块: from multiprocessing import pool [as 别名]
# 或者: from multiprocessing.pool import terminate [as 别名]
def ScopedPool(*args, **kwargs):
"""Context Manager which returns a multiprocessing.pool instance which
correctly deals with thrown exceptions.
*args - Arguments to multiprocessing.pool
Kwargs:
kind ('threads', 'procs') - The type of underlying coprocess to use.
**etc - Arguments to multiprocessing.pool
"""
if kwargs.pop('kind', None) == 'threads':
pool = multiprocessing.pool.ThreadPool(*args, **kwargs)
else:
orig, orig_args = kwargs.get('initializer'), kwargs.get('initargs', ())
kwargs['initializer'] = _ScopedPool_initer
kwargs['initargs'] = orig, orig_args
pool = multiprocessing.pool.Pool(*args, **kwargs)
try:
yield pool
pool.close()
except:
pool.terminate()
raise
finally:
pool.join()
示例7: __call__
# 需要导入模块: from multiprocessing import pool [as 别名]
# 或者: from multiprocessing.pool import terminate [as 别名]
def __call__(self, net_lists):
evaluations = np.zeros(len(net_lists))
for i in np.arange(0, len(net_lists), self.gpu_num):
process_num = np.min((i + self.gpu_num, len(net_lists))) - i
pool = NoDaemonProcessPool(process_num)
arg_data = [(cnn_eval, net_lists[i+j], j, self.epoch_num, self.dataset,
self.verbose, self.imgSize, self.batchsize, self.mask) for j in range(process_num)]
evaluations[i:i+process_num] = pool.map(arg_wrapper_mp, arg_data)
pool.terminate()
return evaluations
# network configurations
示例8: __call__
# 需要导入模块: from multiprocessing import pool [as 别名]
# 或者: from multiprocessing.pool import terminate [as 别名]
def __call__(self, net_lists):
evaluations = np.zeros(len(net_lists))
for i in np.arange(0, len(net_lists), self.gpu_num):
process_num = np.min((i + self.gpu_num, len(net_lists))) - i
pool = NoDaemonProcessPool(process_num)
arg_data = [(cnn_eval, net_lists[i+j], j, self.epoch_num, self.batchsize, self.dataset, self.verbose, self.imgSize) for j in range(process_num)]
evaluations[i:i+process_num] = pool.map(arg_wrapper_mp, arg_data)
pool.terminate()
return evaluations
# network configurations
示例9: closing_pool
# 需要导入模块: from multiprocessing import pool [as 别名]
# 或者: from multiprocessing.pool import terminate [as 别名]
def closing_pool(pool):
try:
with contextlib.closing(pool) as pll:
yield pll
except Exception as exc:
syslog.syslog(syslog.LOG_WARNING,
"Terminate pool due to {0}".format(exc))
pool.terminate()
raise
finally:
pool.join()
示例10: run_calls
# 需要导入模块: from multiprocessing import pool [as 别名]
# 或者: from multiprocessing.pool import terminate [as 别名]
def run_calls(fun, list_of_args, extra_args=(), pool_type='processes',
nb_workers=multiprocessing.cpu_count(), timeout=60, verbose=True,
initializer=None, initargs=None):
"""
Run a function several times in parallel with different inputs.
Args:
fun: function to be called several times in parallel.
list_of_args: list of (first positional) arguments passed to fun, one
per call
extra_args: tuple containing extra arguments to be passed to fun
(same value for all calls)
pool_type: either 'processes' or 'threads'
nb_workers: number of calls run simultaneously
timeout: number of seconds allowed per function call
verbose: either True (show the amount of computed calls) or False
initializer, initargs (optional): if initializer is not None then each
worker process will call initializer(*initargs) when it starts
Return:
list of outputs
"""
if pool_type == 'processes':
pool = multiprocessing.Pool(nb_workers, initializer, initargs)
elif pool_type == 'threads':
pool = multiprocessing.pool.ThreadPool(nb_workers)
else:
print('ERROR: unknow pool_type "{}"'.format(pool_type))
results = []
outputs = []
if verbose:
show_progress.counter = 0
show_progress.total = len(list_of_args)
for x in list_of_args:
if type(x) == tuple:
args = x + extra_args
else:
args = (x,) + extra_args
results.append(pool.apply_async(fun, args=args,
callback=show_progress if verbose else None))
for r in results:
try:
outputs.append(r.get(timeout))
except KeyboardInterrupt:
pool.terminate()
sys.exit(1)
pool.close()
pool.join()
return outputs