本文整理汇总了Python中multiprocessing.dummy方法的典型用法代码示例。如果您正苦于以下问题:Python multiprocessing.dummy方法的具体用法?Python multiprocessing.dummy怎么用?Python multiprocessing.dummy使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类multiprocessing
的用法示例。
在下文中一共展示了multiprocessing.dummy方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import dummy [as 别名]
def __init__(self, dataset, feedin_shape, collate_fn=default_collate, threads=1, shuffle=False):
super(DataLoader, self).__init__()
self.dataset = dataset
self.threads = threads
self.collate_fn = collate_fn(feedin_shape)
# self.collate_fn = self.default_collate_fn
# shape related variables
self.data_shapes = feedin_shape['data']
self.label_shapes = feedin_shape['label']
self.batch_size = feedin_shape['batch_size']
# loader related variables
self.current = 0
self.total = len(self.dataset)
self.shuflle = shuffle
self.map_index = list(range(self.total))
# prepare for loading
self.get_batch = self.get_batch_single_thread
if self.threads > 1: # multi process read
from multiprocessing.dummy import Pool as ThreadPool
# self.pool = multiprocessing.Pool(self.threads)
self.pool = ThreadPool(self.threads)
self.get_batch = self.get_batch_multi_thread
self.reset()
示例2: consume
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import dummy [as 别名]
def consume(self, records: Iterable[Mapping]) -> None:
def work_fn() -> None:
self._handle_records(iter_queue(self.work_queue))
# Use the dummy pool since these workers will primarily wait on elasticsearch
worker_pool = multiprocessing.dummy.Pool(self.n_workers, work_fn)
try:
for record in records:
if 'complete' in record:
# This is handled directly, rather than queued, because the
# consumer guarantees the offset won't be commited until the
# next record is consumed. By not consuming any more records
# we guarantee at least once processing of these sigils.
self._reflect_end_run(record)
else:
self.work_queue.put(record)
except KeyboardInterrupt:
# Simply exit the work loop, let everything clean up as expected.
pass
finally:
worker_pool.close()
for i in range(self.n_workers):
self.work_queue.put(None)
worker_pool.join()
# It is possible, if some workers have errors, for the queue to not be
# completely emptied. Make sure it gets finished
if self.work_queue.qsize() > 0:
log.warning('Work queue not completely drained on shut down. Draining')
# We call repeatedly because the None values exit the iterator
while self.work_queue.qsize() > 0:
work_fn()
示例3: main
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import dummy [as 别名]
def main():
global inference_lock
from multiprocessing.dummy import Pool as ThreadPool
import multiprocessing
category_folders = glob.glob('%s/*' % (args.images))
inference_lock = multiprocessing.Lock()
cpu_n = multiprocessing.cpu_count()
pool = ThreadPool(cpu_n)
_ = pool.map(process, category_folders)
示例4: api_ping_list
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import dummy [as 别名]
def api_ping_list(hosts, bind=None, timeout=None, threads=10):
"""
Ping a list of hosts and return a list of their statuses.
"""
if len(hosts) == 0:
return {}
# Work around a bug in 2.6
# TODO: Get rid of this when 2.6 is no longer in the picture.
if not hasattr(threading.current_thread(), "_children"):
threading.current_thread()._children = weakref.WeakKeyDictionary()
pool = multiprocessing.dummy.Pool(processes=min(len(hosts), threads))
pool_args = [(host, timeout) for host in hosts]
result = {}
def ping_one(arg):
host, timeout = arg
up, _ = api_ping(host, bind=bind, timeout=timeout)
return (host, up)
for host, state in pool.imap(
ping_one,
pool_args,
chunksize=1):
result[host] = state
pool.close()
return result
示例5: dns_bulk_resolve
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import dummy [as 别名]
def dns_bulk_resolve(candidates, reverse=False, ip_version=None, threads=50):
"""
Resolve a list of host names to IPs or, if reverse is true, IPs to
host names. Return a map of each result keyed to its candidate.
WARNING: This function will create a pool of up to 'threads'
threads.
"""
# This is based loosely on http://stackoverflow.com/a/34377198
if reverse and ip_version is not None:
raise ValueError("Unable to force IP version when reverse-resolving")
if ip_version is None:
ip_version = 4
__check_ip_version__(ip_version)
result = {}
if len(candidates) == 0:
return result
# Work around a bug in 2.6
# TODO: Get rid of this when 2.6 is no longer in the picture.
if not hasattr(threading.current_thread(), "_children"):
threading.current_thread()._children = weakref.WeakKeyDictionary()
pool = multiprocessing.dummy.Pool(
processes=min(len(candidates), threads) )
candidate_args = [ (candidate, ip_version) for candidate in candidates ]
for ip, name in pool.imap(
__reverser__ if reverse else __forwarder__,
candidate_args,
chunksize=1):
result[ip] = name
pool.close()
return result
示例6: timeout_worker
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import dummy [as 别名]
def timeout_worker(*arg):
# One thread to process this file, with a timeout
p = multiprocessing.dummy.Pool(1)
res = p.apply_async(disas_worker, arg)
try:
out = res.get(timeout=arg[0][-1])
p.close()
except multiprocessing.TimeoutError:
print("WARNING: Disassembly timeout for", arg[0][0])
p.terminate()
p.close()
out = None
return out
示例7: _all
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import dummy [as 别名]
def _all(func, hosts):
'''
Internal function that allow function to perform in all hosts
'''
all_instances = []
# threads should likely scale with cores or interfaces
cpus = multiprocessing.cpu_count()
threads = 4 * cpus
log.debug('multi._all cpus count={}, thread count={}'.format(cpus, threads))
pool = multiprocessing.dummy.Pool(threads)
for instance in pool.map(func, hosts):
all_instances.append(instance)
return all_instances
示例8: test_main
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import dummy [as 别名]
def test_main(run=None):
if sys.platform.startswith("linux"):
try:
lock = multiprocessing.RLock()
except OSError:
raise unittest.SkipTest("OSError raises on RLock creation, see issue 3111!")
check_enough_semaphores()
if run is None:
from test.support import run_unittest as run
util.get_temp_dir() # creates temp directory for use by all processes
multiprocessing.get_logger().setLevel(LOG_LEVEL)
ProcessesMixin.pool = multiprocessing.Pool(4)
ThreadsMixin.pool = multiprocessing.dummy.Pool(4)
ManagerMixin.manager.__init__()
ManagerMixin.manager.start()
ManagerMixin.pool = ManagerMixin.manager.Pool(4)
testcases = (
sorted(testcases_processes.values(), key=lambda tc:tc.__name__) +
sorted(testcases_threads.values(), key=lambda tc:tc.__name__) +
sorted(testcases_manager.values(), key=lambda tc:tc.__name__) +
testcases_other
)
loadTestsFromTestCase = unittest.defaultTestLoader.loadTestsFromTestCase
suite = unittest.TestSuite(loadTestsFromTestCase(tc) for tc in testcases)
# (ncoghlan): Whether or not sys.exc_clear is executed by the threading
# module during these tests is at least platform dependent and possibly
# non-deterministic on any given platform. So we don't mind if the listed
# warnings aren't actually raised.
with support.check_py3k_warnings(
(".+__(get|set)slice__ has been removed", DeprecationWarning),
(r"sys.exc_clear\(\) not supported", DeprecationWarning),
quiet=True):
run(suite)
ThreadsMixin.pool.terminate()
ProcessesMixin.pool.terminate()
ManagerMixin.pool.terminate()
ManagerMixin.manager.shutdown()
del ProcessesMixin.pool, ThreadsMixin.pool, ManagerMixin.pool
示例9: write_to_buffer
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import dummy [as 别名]
def write_to_buffer(dataframe, buffer_path, columns, expected_size=None):
"""Write a dataframe to a binary file for a dataset to consume.
Args:
dataframe: The pandas dataframe to be serialized.
buffer_path: The path where the serialized results will be written.
columns: The dataframe columns to be serialized.
expected_size: The size in bytes of the serialized results. This is used to
lazily construct the buffer.
Returns:
The path of the buffer.
"""
if (tf.io.gfile.exists(buffer_path) and
tf.io.gfile.stat(buffer_path).length > 0):
actual_size = tf.io.gfile.stat(buffer_path).length
if expected_size == actual_size:
return buffer_path
tf.compat.v1.logging.warning(
"Existing buffer {} has size {}. Expected size {}. Deleting and "
"rebuilding buffer.".format(buffer_path, actual_size, expected_size))
tf.io.gfile.remove(buffer_path)
if dataframe is None:
raise ValueError(
"dataframe was None but a valid existing buffer was not found.")
tf.io.gfile.makedirs(os.path.split(buffer_path)[0])
tf.compat.v1.logging.info("Constructing TFRecordDataset buffer: {}"
.format(buffer_path))
count = 0
pool = multiprocessing.dummy.Pool(multiprocessing.cpu_count())
try:
with tf.io.TFRecordWriter(buffer_path) as writer:
for df_shards in iter_shard_dataframe(df=dataframe,
rows_per_core=_ROWS_PER_CORE):
_serialize_shards(df_shards, columns, pool, writer)
count += sum([len(s) for s in df_shards])
tf.compat.v1.logging.info("{}/{} examples written."
.format(str(count).ljust(8), len(dataframe)))
finally:
pool.terminate()
tf.compat.v1.logging.info("Buffer write complete.")
return buffer_path
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:49,代码来源:file_io.py
示例10: get_json_data_from_directory
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import dummy [as 别名]
def get_json_data_from_directory(directory):
"""Get the JSON data contents required for material setup."""
logging.debug("Searching for JSON...")
files = [f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f))]
# Search for any JSON file. Custom Mixer scans don't have a suffix like the ones from the library.
data = {}
for f in files:
filename, extension = os.path.splitext(f)
if extension == ".json":
logging.debug("...JSON found!!!")
json_file = os.path.join(directory, filename + ".json")
with open(json_file) as json_file:
json_data = json.load(json_file)
if not json_data:
return None
meta_data = json_data.get('meta')
logging.debug("Meta JSON Data: " + str(meta_data))
if not meta_data:
return None
categories = json_data.get('categories')
logging.debug("Categories JSON Data: " + str(categories))
if not categories:
return None
maps = json_data.get('maps')
logging.debug("JSON follows Megascans structure.")
if categories:
if 'surface' in categories:
data['type'] = 'surface'
if '3d' in categories:
data['type'] = '3d'
if 'atlas' in categories:
data['type'] = 'atlas'
if '3dplant' in categories:
data['type'] = '3dplant'
if meta_data:
for md in meta_data:
if md['key'] == "height":
data['surface_height'] = float((md['value']).replace("m", "").replace(" ", ""))
elif md['key'] == "scanArea":
data['scan_area'] = [float(val) for val in
(md['value']).replace("m", "").replace(" ", "").split("x")]
elif md['key'] == "tileable":
data['tileable'] = md['value']
if maps:
for mp in maps:
if mp['type'] == 'displacement' and 'maxIntensity' in mp and 'minIntensity' in mp:
# getting average intensity, using 260 as max RGB since that's what Megascans is doing
data['displacement_offset'] = ((mp['maxIntensity'] + mp['minIntensity']) * 0.5) / 260.0
break
return data