本文整理汇总了Python中multiprocessing.SimpleQueue方法的典型用法代码示例。如果您正苦于以下问题:Python multiprocessing.SimpleQueue方法的具体用法?Python multiprocessing.SimpleQueue怎么用?Python multiprocessing.SimpleQueue使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类multiprocessing
的用法示例。
在下文中一共展示了multiprocessing.SimpleQueue方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: init_worker
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import SimpleQueue [as 别名]
def init_worker(status_queue: multiprocessing.SimpleQueue,
param_queue: multiprocessing.SimpleQueue,
result_queue: multiprocessing.SimpleQueue) -> None:
global result
global coverage_run
# Make sure the generator is re-seeded, as we have inherited
# the seed from the parent process.
random.seed()
result = ChannelingTestResult(result_queue)
if not param_queue.empty():
server_addr = param_queue.get()
if server_addr is not None:
os.environ['EDGEDB_TEST_CLUSTER_ADDR'] = json.dumps(server_addr)
coverage_run = devmode.CoverageConfig.start_coverage_if_requested()
status_queue.put(True)
示例2: multi_proc_run
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import SimpleQueue [as 别名]
def multi_proc_run(num_proc, fun, fun_args=(), fun_kwargs=None):
"""Runs a function in a multi-proc setting (unless num_proc == 1)."""
# There is no need for multi-proc in the single-proc case
fun_kwargs = fun_kwargs if fun_kwargs else {}
if num_proc == 1:
fun(*fun_args, **fun_kwargs)
return
# Handle errors from training subprocesses
error_queue = multiprocessing.SimpleQueue()
error_handler = ErrorHandler(error_queue)
# Get a random port to use (without using global random number generator)
port = random.Random().randint(cfg.PORT_RANGE[0], cfg.PORT_RANGE[1])
# Run each training subprocess
ps = []
for i in range(num_proc):
p_i = multiprocessing.Process(
target=run, args=(i, num_proc, port, error_queue, fun, fun_args, fun_kwargs)
)
ps.append(p_i)
p_i.start()
error_handler.add_child(p_i.pid)
# Wait for each subprocess to finish
for p in ps:
p.join()
示例3: __init__
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import SimpleQueue [as 别名]
def __init__(self):
self.detection_queue = mp.SimpleQueue()
self.avg_inference_speed = mp.Value('d', 0.01)
self.detection_start = mp.Value('d', 0.0)
self.detect_process = None
self.start_or_restart()
示例4: __init__
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import SimpleQueue [as 别名]
def __init__(self, max_workers=None):
"""Initializes a new ProcessPoolExecutor instance.
Args:
max_workers: The maximum number of processes that can be used to
execute the given calls. If None or not given then as many
worker processes will be created as the machine has processors.
"""
_check_system_limits()
if max_workers is None:
self._max_workers = os.cpu_count() or 1
else:
if max_workers <= 0:
raise ValueError("max_workers must be greater than 0")
self._max_workers = max_workers
# Make the call queue slightly larger than the number of processes to
# prevent the worker processes from idling. But don't make it too big
# because futures in the call queue cannot be cancelled.
self._call_queue = multiprocessing.Queue(self._max_workers +
EXTRA_QUEUED_CALLS)
# Killed worker processes can produce spurious "broken pipe"
# tracebacks in the queue's own worker thread. But we detect killed
# processes anyway, so silence the tracebacks.
self._call_queue._ignore_epipe = True
self._result_queue = SimpleQueue()
self._work_ids = queue.Queue()
self._queue_management_thread = None
# Map of pids to processes
self._processes = {}
# Shutdown is a two-step process.
self._shutdown_thread = False
self._shutdown_lock = threading.Lock()
self._broken = False
self._queue_count = 0
self._pending_work_items = {}
示例5: __init__
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import SimpleQueue [as 别名]
def __init__(self, max_workers=None):
"""Initializes a new ProcessPoolExecutor instance.
Args:
max_workers: The maximum number of processes that can be used to
execute the given calls. If None or not given then as many
worker processes will be created as the machine has processors.
"""
_check_system_limits()
if max_workers is None:
self._max_workers = os.cpu_count() or 1
else:
self._max_workers = max_workers
# Make the call queue slightly larger than the number of processes to
# prevent the worker processes from idling. But don't make it too big
# because futures in the call queue cannot be cancelled.
self._call_queue = multiprocessing.Queue(self._max_workers +
EXTRA_QUEUED_CALLS)
# Killed worker processes can produce spurious "broken pipe"
# tracebacks in the queue's own worker thread. But we detect killed
# processes anyway, so silence the tracebacks.
self._call_queue._ignore_epipe = True
self._result_queue = SimpleQueue()
self._work_ids = queue.Queue()
self._queue_management_thread = None
# Map of pids to processes
self._processes = {}
# Shutdown is a two-step process.
self._shutdown_thread = False
self._shutdown_lock = threading.Lock()
self._broken = False
self._queue_count = 0
self._pending_work_items = {}
示例6: test_empty
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import SimpleQueue [as 别名]
def test_empty(self):
queue = multiprocessing.SimpleQueue()
child_can_start = multiprocessing.Event()
parent_can_continue = multiprocessing.Event()
proc = multiprocessing.Process(
target=self._test_empty,
args=(queue, child_can_start, parent_can_continue)
)
proc.daemon = True
proc.start()
self.assertTrue(queue.empty())
child_can_start.set()
parent_can_continue.wait()
self.assertFalse(queue.empty())
self.assertEqual(queue.get(), True)
self.assertEqual(queue.get(), False)
self.assertTrue(queue.empty())
proc.join()
#
# Mixins
#
示例7: __init__
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import SimpleQueue [as 别名]
def __init__(
self,
setup_queue: multiprocessing.SimpleQueue,
result_queue: multiprocessing.SimpleQueue,
) -> None:
self.setup_queue = setup_queue
self.result_queue = result_queue
super().__init__()
示例8: server_6
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import SimpleQueue [as 别名]
def server_6() -> None:
# Two queues
setup_q: multiprocessing.SimpleQueue = multiprocessing.SimpleQueue()
results_q: multiprocessing.SimpleQueue = multiprocessing.SimpleQueue()
# The summarization process: waiting for work
result = Summarize(results_q)
result.start()
# The simulation process: also waiting for work.
# We might want to create a Pool of these so that
# we can get even more done at one time.
simulators = []
for i in range(4):
sim = Simulation(setup_q, results_q)
sim.start()
simulators.append(sim)
# Queue up some objects to work on.
table = Table(decks=6, limit=50, dealer=Hit17(), split=ReSplit(), payout=(3, 2))
for bet in Flat, Martingale, OneThreeTwoSix:
player = Player(SomeStrategy(), bet(), 100, 25)
for sample in range(5):
setup_q.put((table, player))
# Queue a terminator for each simulator.
for sim in simulators:
setup_q.put((None, None))
# Wait for the simulations to all finish.
for sim in simulators:
sim.join()
# Queue up a results terminator.
# Results processing done?
results_q.put((None, None, None))
result.join()
del results_q
del setup_q
示例9: setUp
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import SimpleQueue [as 别名]
def setUp(self):
# Create the queues for logging and submission
self.submission_queue = mp.SimpleQueue()
self.fasta_out = "temporary.fasta"
self.gtf_out = "temporary.gtf"
示例10: run
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import SimpleQueue [as 别名]
def run(self, result):
# We use SimpleQueues because they are more predictable.
# They do the necessary IO directly, without using a
# helper thread.
result_queue = multiprocessing.SimpleQueue()
status_queue = multiprocessing.SimpleQueue()
worker_param_queue = multiprocessing.SimpleQueue()
# Prepopulate the worker param queue with server connection
# information.
for _ in range(self.num_workers):
worker_param_queue.put(self.server_conn)
result_thread = threading.Thread(
name='test-monitor', target=monitor_thread,
args=(result_queue, result), daemon=True)
result_thread.start()
initargs = (status_queue, worker_param_queue, result_queue)
pool = multiprocessing.Pool(
self.num_workers,
initializer=mproc_fixes.WorkerScope(init_worker, shutdown_worker),
initargs=initargs)
# Wait for all workers to initialize.
for _ in range(self.num_workers):
status_queue.get()
with pool:
ar = pool.map_async(_run_test, iter(self.tests), chunksize=1)
while True:
try:
ar.get(timeout=0.1)
except multiprocessing.TimeoutError:
if self.stop_requested:
break
else:
continue
else:
break
# Post the terminal message to the queue so that
# test-monitor can stop.
result_queue.put((None, None, None))
# Give the test-monitor thread some time to
# process the queue messages. If something
# goes wrong, the thread will be forcibly
# joined by a timeout.
result_thread.join(timeout=3)
# Wait for pool to shutdown, this includes test teardowns.
pool.join()
return result
示例11: __init__
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import SimpleQueue [as 别名]
def __init__(self, loader):
self.dataset = loader.dataset
self.collate_fn = loader.collate_fn
self.batch_sampler = loader.batch_sampler
self.num_workers = loader.num_workers
self.pin_memory = loader.pin_memory
self.done_event = threading.Event()
self.worker_init_fn = loader.worker_init_fn
self.worker_init_args = loader.worker_init_args
self.worker_init_kwargs = loader.worker_init_kwargs
self.sample_iter = iter(self.batch_sampler)
if self.num_workers > 0:
self.index_queue = multiprocessing.SimpleQueue()
self.data_queue = multiprocessing.SimpleQueue()
self.batches_outstanding = 0
self.shutdown = False
self.send_idx = 0
self.rcvd_idx = 0
self.reorder_dict = {}
self.seeds = loader.gen_seeds()
self.workers = [
multiprocessing.Process(
target=_worker_loop_seed,
args=(i, self.dataset, self.index_queue, self.data_queue, self.collate_fn, self.seeds[i],
self.worker_init_fn, self.worker_init_args[i], self.worker_init_kwargs[i]))
for i in range(self.num_workers)]
for w in self.workers:
w.daemon = True # ensure that the worker exits on process exit
w.start()
if self.pin_memory:
in_data = self.data_queue
self.data_queue = queue.Queue()
self.pin_thread = threading.Thread(
target=_pin_memory_loop,
args=(in_data, self.data_queue, self.done_event))
self.pin_thread.daemon = True
self.pin_thread.start()
# prime the prefetch loop
for _ in range(2 * self.num_workers):
self._put_indices()
else:
if self.worker_init_fn is not None:
self.worker_init_fn(-1, *self.worker_init_args, **self.worker_init_kwargs)
示例12: launch_process_group
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import SimpleQueue [as 别名]
def launch_process_group(func: typing.Callable,
args: argparse.Namespace,
num_processes: int,
num_nodes: int = 1,
node_rank: int = 0,
master_addr: str = "127.0.0.1",
master_port: int = 29500,
join: bool = True,
daemon: bool = False):
# world size in terms of number of processes
dist_world_size = num_processes * num_nodes
# set PyTorch distributed related environmental variables
current_env = os.environ.copy()
current_env["MASTER_ADDR"] = master_addr
current_env["MASTER_PORT"] = str(master_port)
current_env["WORLD_SIZE"] = str(dist_world_size)
if 'OMP_NUM_THREADS' not in os.environ and num_processes > 1:
current_env["OMP_NUM_THREADS"] = str(4)
error_queues = []
processes = []
for local_rank in range(num_processes):
# each process's rank
dist_rank = num_processes * node_rank + local_rank
current_env["RANK"] = str(dist_rank)
current_env["LOCAL_RANK"] = str(local_rank)
args.local_rank = local_rank
error_queue: mp.SimpleQueue[Exception] = mp.SimpleQueue()
kwargs = {'args': args, 'env': current_env}
process = mp.Process(
target=_wrap,
args=(func, kwargs, error_queue),
daemon=daemon)
process.start()
error_queues.append(error_queue)
processes.append(process)
process_context = ProcessContext(processes, error_queues)
if not join:
return process_context
while not process_context.join():
pass