本文整理汇总了Python中multiprocessing.Condition方法的典型用法代码示例。如果您正苦于以下问题:Python multiprocessing.Condition方法的具体用法?Python multiprocessing.Condition怎么用?Python multiprocessing.Condition使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类multiprocessing
的用法示例。
在下文中一共展示了multiprocessing.Condition方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_waitfor
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import Condition [as 别名]
def test_waitfor(self):
# based on test in test/lock_tests.py
cond = self.Condition()
state = self.Value('i', -1)
p = self.Process(target=self._test_waitfor_f, args=(cond, state))
p.daemon = True
p.start()
with cond:
result = cond.wait_for(lambda : state.value==0)
self.assertTrue(result)
self.assertEqual(state.value, 0)
for i in range(4):
time.sleep(0.01)
with cond:
state.value += 1
cond.notify()
p.join(5)
self.assertFalse(p.is_alive())
self.assertEqual(p.exitcode, 0)
示例2: test_copy_shared_mem
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import Condition [as 别名]
def test_copy_shared_mem():
csr = (spsp.random(num_nodes, num_nodes, density=0.1, format='csr') != 0).astype(np.int64)
gidx = dgl.graph_index.create_graph_index(csr, True)
cond_v = Condition()
shared_v = Value('i', 0)
p1 = Process(target=create_mem, args=(gidx, cond_v, shared_v))
p2 = Process(target=check_mem, args=(gidx, cond_v, shared_v))
p1.start()
p2.start()
p1.join()
p2.join()
# Skip test this file
#if __name__ == '__main__':
# test_copy_shared_mem()
# test_init()
# test_sync_barrier()
# test_compute()
示例3: test_waitfor_timeout
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import Condition [as 别名]
def test_waitfor_timeout(self):
# based on test in test/lock_tests.py
cond = self.Condition()
state = self.Value('i', 0)
success = self.Value('i', False)
sem = self.Semaphore(0)
p = self.Process(target=self._test_waitfor_timeout_f,
args=(cond, state, success, sem))
p.daemon = True
p.start()
self.assertTrue(sem.acquire(timeout=10))
# Only increment 3 times, so state == 4 is never reached.
for i in range(3):
time.sleep(0.01)
with cond:
state.value += 1
cond.notify()
p.join(5)
self.assertTrue(success.value)
示例4: test_wait_result
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import Condition [as 别名]
def test_wait_result(self):
if isinstance(self, ProcessesMixin) and sys.platform != 'win32':
pid = os.getpid()
else:
pid = None
c = self.Condition()
with c:
self.assertFalse(c.wait(0))
self.assertFalse(c.wait(0.1))
p = self.Process(target=self._test_wait_result, args=(c, pid))
p.start()
self.assertTrue(c.wait(10))
if pid is not None:
self.assertRaises(KeyboardInterrupt, c.wait, 10)
p.join()
示例5: __init__
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import Condition [as 别名]
def __init__(self, *args):
TServer.__init__(self, *args)
self.numWorkers = 10
self.workers = []
self.isRunning = Value('b', False)
self.stopCondition = Condition()
self.postForkCallback = None
示例6: __init__
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import Condition [as 别名]
def __init__(self):
self.lock = multiprocessing.Lock()
self.readers_condition = multiprocessing.Condition(self.lock)
self.writer_condition = multiprocessing.Condition(self.lock)
self.readers = multiprocessing.RawValue(ctypes.c_uint, 0)
self.writer = multiprocessing.RawValue(ctypes.c_bool, False)
示例7: test_timeout
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import Condition [as 别名]
def test_timeout(self):
cond = self.Condition()
wait = TimingWrapper(cond.wait)
cond.acquire()
res = wait(TIMEOUT1)
cond.release()
self.assertEqual(res, False)
self.assertTimingAlmostEqual(wait.elapsed, TIMEOUT1)
示例8: __init__
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import Condition [as 别名]
def __init__(self, maxsize=0):
'''initialize the queue'''
self.mutex = multiprocessing.Lock()
self.not_empty = multiprocessing.Condition(self.mutex)
self.not_full = multiprocessing.Condition(self.mutex)
self.maxsize = maxsize
self._tags = {} # list of refid's for each tag
self._queue = {} # the actual queue data
self._refcount = {} # how many tags refer to a given refid in the queue
self.id_generator = id_generator()
示例9: __init__
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import Condition [as 别名]
def __init__(self, target, num_workers, description=None):
# type: (_MultiprocessOffload, function, int, str) -> None
"""Ctor for Multiprocess Offload
:param _MultiprocessOffload self: this
:param function target: target function for process
:param int num_workers: number of worker processes
:param str description: description
"""
self._task_queue = multiprocessing.Queue()
self._done_queue = multiprocessing.Queue()
self._done_cv = multiprocessing.Condition()
self._term_signal = multiprocessing.Value('i', 0)
self._procs = []
self._check_thread = None
self._initialize_processes(target, num_workers, description)
示例10: done_cv
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import Condition [as 别名]
def done_cv(self):
# type: (_MultiprocessOffload) -> multiprocessing.Condition
"""Get Done condition variable
:param _MultiprocessOffload self: this
:rtype: multiprocessing.Condition
:return: cv for download done
"""
return self._done_cv
示例11: test_notify
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import Condition [as 别名]
def test_notify(self):
cond = self.Condition()
sleeping = self.Semaphore(0)
woken = self.Semaphore(0)
p = self.Process(target=self.f, args=(cond, sleeping, woken))
p.daemon = True
p.start()
p = threading.Thread(target=self.f, args=(cond, sleeping, woken))
p.daemon = True
p.start()
# wait for both children to start sleeping
sleeping.acquire()
sleeping.acquire()
# check no process/thread has woken up
time.sleep(DELTA)
self.assertReturnsIfImplemented(0, get_value, woken)
# wake up one process/thread
cond.acquire()
cond.notify()
cond.release()
# check one process/thread has woken up
time.sleep(DELTA)
self.assertReturnsIfImplemented(1, get_value, woken)
# wake up another
cond.acquire()
cond.notify()
cond.release()
# check other has woken up
time.sleep(DELTA)
self.assertReturnsIfImplemented(2, get_value, woken)
# check state is not mucked up
self.check_invariant(cond)
p.join()
示例12: init_workers
# 需要导入模块: import multiprocessing [as 别名]
# 或者: from multiprocessing import Condition [as 别名]
def init_workers(self):
"""
Initialize all types of workers and start their worker processes.
"""
actor_queues = [faster_fifo.Queue() for _ in range(self.cfg.num_workers)]
policy_worker_queues = dict()
for policy_id in range(self.cfg.num_policies):
policy_worker_queues[policy_id] = []
for i in range(self.cfg.policy_workers_per_policy):
policy_worker_queues[policy_id].append(TorchJoinableQueue())
log.info('Initializing learners...')
policy_locks = [multiprocessing.Lock() for _ in range(self.cfg.num_policies)]
resume_experience_collection_cv = [multiprocessing.Condition() for _ in range(self.cfg.num_policies)]
learner_idx = 0
for policy_id in range(self.cfg.num_policies):
learner_worker = LearnerWorker(
learner_idx, policy_id, self.cfg, self.obs_space, self.action_space,
self.report_queue, policy_worker_queues[policy_id], self.traj_buffers,
policy_locks[policy_id], resume_experience_collection_cv[policy_id],
)
learner_worker.start_process()
learner_worker.init()
self.learner_workers[policy_id] = learner_worker
learner_idx += 1
log.info('Initializing policy workers...')
for policy_id in range(self.cfg.num_policies):
self.policy_workers[policy_id] = []
policy_queue = faster_fifo.Queue()
self.policy_queues[policy_id] = policy_queue
for i in range(self.cfg.policy_workers_per_policy):
policy_worker = PolicyWorker(
i, policy_id, self.cfg, self.obs_space, self.action_space, self.traj_buffers,
policy_queue, actor_queues, self.report_queue, policy_worker_queues[policy_id][i],
policy_locks[policy_id], resume_experience_collection_cv[policy_id],
)
self.policy_workers[policy_id].append(policy_worker)
policy_worker.start_process()
log.info('Initializing actors...')
# We support actor worker initialization in groups, which can be useful for some envs that
# e.g. crash when too many environments are being initialized in parallel.
# Currently the limit is not used since it is not required for any envs supported out of the box,
# so we parallelize initialization as hard as we can.
# If this is required for your environment, perhaps a better solution would be to use global locks,
# like FileLock (see doom_gym.py)
self.actor_workers = []
max_parallel_init = int(1e9) # might be useful to limit this for some envs
worker_indices = list(range(self.cfg.num_workers))
for i in range(0, self.cfg.num_workers, max_parallel_init):
workers = self.init_subset(worker_indices[i:i + max_parallel_init], actor_queues)
self.actor_workers.extend(workers)