本文整理汇总了Python中mpmath.mpf方法的典型用法代码示例。如果您正苦于以下问题:Python mpmath.mpf方法的具体用法?Python mpmath.mpf怎么用?Python mpmath.mpf使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mpmath
的用法示例。
在下文中一共展示了mpmath.mpf方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: compute_d
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import mpf [as 别名]
def compute_d(K, N):
"""d_{k, n} from DLMF 8.12.12"""
M = N + 2*K
d0 = [-mp.mpf(1)/3]
alpha = compute_alpha(M + 2)
for n in range(1, M):
d0.append((n + 2)*alpha[n+2])
d = [d0]
g = compute_g(K)
for k in range(1, K):
dk = []
for n in range(M - 2*k):
dk.append((-1)**k*g[k]*d[0][n] + (n + 2)*d[k-1][n+2])
d.append(dk)
for k in range(K):
d[k] = d[k][:N]
return d
示例2: gammainc
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import mpf [as 别名]
def gammainc(a, x, dps=50, maxterms=10**8):
"""Compute gammainc exactly like mpmath does but allow for more
summands in hypercomb. See
mpmath/functions/expintegrals.py#L134
in the mpmath github repository.
"""
with mp.workdps(dps):
z, a, b = mp.mpf(a), mp.mpf(x), mp.mpf(x)
G = [z]
negb = mp.fneg(b, exact=True)
def h(z):
T1 = [mp.exp(negb), b, z], [1, z, -1], [], G, [1], [1+z], b
return (T1,)
res = mp.hypercomb(h, [z], maxterms=maxterms)
return mpf2float(res)
示例3: zpkfreqz
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import mpf [as 别名]
def zpkfreqz(z, p, k, worN=None):
"""
Frequency response of a filter in zpk format, using mpmath.
This is the same calculation as scipy.signal.freqz, but the input is in
zpk format, the calculation is performed using mpath, and the results are
returned in lists instead of numpy arrays.
"""
if worN is None or isinstance(worN, int):
N = worN or 512
ws = [mpmath.pi * mpmath.mpf(j) / N for j in range(N)]
else:
ws = worN
h = []
for wk in ws:
zm1 = mpmath.exp(1j * wk)
numer = _prod([zm1 - t for t in z])
denom = _prod([zm1 - t for t in p])
hk = k * numer / denom
h.append(hk)
return ws, h
示例4: test_rf
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import mpf [as 别名]
def test_rf(self):
if LooseVersion(mpmath.__version__) >= LooseVersion("1.0.0"):
# no workarounds needed
mppoch = mpmath.rf
else:
def mppoch(a, m):
# deal with cases where the result in double precision
# hits exactly a non-positive integer, but the
# corresponding extended-precision mpf floats don't
if float(a + m) == int(a + m) and float(a + m) <= 0:
a = mpmath.mpf(a)
m = int(a + m) - a
return mpmath.rf(a, m)
assert_mpmath_equal(sc.poch,
mppoch,
[Arg(), Arg()],
dps=400)
示例5: test_boxcox
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import mpf [as 别名]
def test_boxcox(self):
def mp_boxcox(x, lmbda):
x = mpmath.mp.mpf(x)
lmbda = mpmath.mp.mpf(lmbda)
if lmbda == 0:
return mpmath.mp.log(x)
else:
return mpmath.mp.powm1(x, lmbda) / lmbda
assert_mpmath_equal(sc.boxcox,
exception_to_nan(mp_boxcox),
[Arg(a=0, inclusive_a=False), Arg()],
n=200,
dps=60,
rtol=1e-13)
示例6: test_boxcox1p
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import mpf [as 别名]
def test_boxcox1p(self):
def mp_boxcox1p(x, lmbda):
x = mpmath.mp.mpf(x)
lmbda = mpmath.mp.mpf(lmbda)
one = mpmath.mp.mpf(1)
if lmbda == 0:
return mpmath.mp.log(one + x)
else:
return mpmath.mp.powm1(one + x, lmbda) / lmbda
assert_mpmath_equal(sc.boxcox1p,
exception_to_nan(mp_boxcox1p),
[Arg(a=-1, inclusive_a=False), Arg()],
n=200,
dps=60,
rtol=1e-13)
示例7: mpf2float
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import mpf [as 别名]
def mpf2float(x):
"""
Convert an mpf to the nearest floating point number. Just using
float directly doesn't work because of results like this:
with mp.workdps(50):
float(mpf("0.99999999999999999")) = 0.9999999999999999
"""
return float(mpmath.nstr(x, 17, min_fixed=0, max_fixed=0))
示例8: mp_assert_allclose
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import mpf [as 别名]
def mp_assert_allclose(res, std, atol=0, rtol=1e-17):
"""
Compare lists of mpmath.mpf's or mpmath.mpc's directly so that it
can be done to higher precision than double.
"""
try:
len(res)
except TypeError:
res = list(res)
n = len(std)
if len(res) != n:
raise AssertionError("Lengths of inputs not equal.")
failures = []
for k in range(n):
try:
assert_(mpmath.fabs(res[k] - std[k]) <= atol + rtol*mpmath.fabs(std[k]))
except AssertionError:
failures.append(k)
ndigits = int(abs(np.log10(rtol)))
msg = [""]
msg.append("Bad results ({} out of {}) for the following points:"
.format(len(failures), n))
for k in failures:
resrep = mpmath.nstr(res[k], ndigits, min_fixed=0, max_fixed=0)
stdrep = mpmath.nstr(std[k], ndigits, min_fixed=0, max_fixed=0)
if std[k] == 0:
rdiff = "inf"
else:
rdiff = mpmath.fabs((res[k] - std[k])/std[k])
rdiff = mpmath.nstr(rdiff, 3)
msg.append("{}: {} != {} (rdiff {})".format(k, resrep, stdrep, rdiff))
if failures:
assert_(False, "\n".join(msg))
示例9: compute_a
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import mpf [as 别名]
def compute_a(n):
"""a_k from DLMF 5.11.6"""
a = [mp.sqrt(2)/2]
for k in range(1, n):
ak = a[-1]/k
for j in range(1, len(a)):
ak -= a[j]*a[-j]/(j + 1)
ak /= a[0]*(1 + mp.mpf(1)/(k + 1))
a.append(ak)
return a
示例10: lagrange_inversion
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import mpf [as 别名]
def lagrange_inversion(a):
"""Given a series
f(x) = a[1]*x + a[2]*x**2 + ... + a[n-1]*x**(n - 1),
use the Lagrange inversion formula to compute a series
g(x) = b[1]*x + b[2]*x**2 + ... + b[n-1]*x**(n - 1)
so that f(g(x)) = g(f(x)) = x mod x**n. We must have a[0] = 0, so
necessarily b[0] = 0 too.
The algorithm is naive and could be improved, but speed isn't an
issue here and it's easy to read.
"""
n = len(a)
f = sum(a[i]*x**i for i in range(len(a)))
h = (x/f).series(x, 0, n).removeO()
hpower = [h**0]
for k in range(n):
hpower.append((hpower[-1]*h).expand())
b = [mp.mpf(0)]
for k in range(1, n):
b.append(hpower[k].coeff(x, k - 1)/k)
b = map(lambda x: mp.mpf(x), b)
return b
示例11: _binomial_cdf
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import mpf [as 别名]
def _binomial_cdf(k, n, p):
k, n, p = mpmath.mpf(k), mpmath.mpf(n), mpmath.mpf(p)
if k <= 0:
return mpmath.mpf(0)
elif k >= n:
return mpmath.mpf(1)
onemp = mpmath.fsub(1, p, exact=True)
return mpmath.betainc(n - k, k + 1, x2=onemp, regularized=True)
示例12: _f_cdf
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import mpf [as 别名]
def _f_cdf(dfn, dfd, x):
if x < 0:
return mpmath.mpf(0)
dfn, dfd, x = mpmath.mpf(dfn), mpmath.mpf(dfd), mpmath.mpf(x)
ub = dfn*x/(dfn*x + dfd)
res = mpmath.betainc(dfn/2, dfd/2, x2=ub, regularized=True)
return res
示例13: _noncentral_chi_cdf
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import mpf [as 别名]
def _noncentral_chi_cdf(x, df, nc, dps=None):
if dps is None:
dps = mpmath.mp.dps
x, df, nc = mpmath.mpf(x), mpmath.mpf(df), mpmath.mpf(nc)
with mpmath.workdps(dps):
res = mpmath.quad(lambda t: _noncentral_chi_pdf(t, df, nc), [0, x])
return res
示例14: test_tklmbda_zero_shape
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import mpf [as 别名]
def test_tklmbda_zero_shape(self):
# When lmbda = 0 the CDF has a simple closed form
one = mpmath.mpf(1)
assert_mpmath_equal(
lambda x: sp.tklmbda(x, 0),
lambda x: one/(mpmath.exp(-x) + one),
[Arg()], rtol=1e-7)
示例15: test_g
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import mpf [as 别名]
def test_g():
# Test data for the g_k. See DLMF 5.11.4.
with mp.workdps(30):
g = [mp.mpf(1), mp.mpf(1)/12, mp.mpf(1)/288,
-mp.mpf(139)/51840, -mp.mpf(571)/2488320,
mp.mpf(163879)/209018880, mp.mpf(5246819)/75246796800]
mp_assert_allclose(compute_g(7), g)