本文整理汇总了Python中mpmath.exp方法的典型用法代码示例。如果您正苦于以下问题:Python mpmath.exp方法的具体用法?Python mpmath.exp怎么用?Python mpmath.exp使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mpmath
的用法示例。
在下文中一共展示了mpmath.exp方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: gammainc
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import exp [as 别名]
def gammainc(a, x, dps=50, maxterms=10**8):
"""Compute gammainc exactly like mpmath does but allow for more
summands in hypercomb. See
mpmath/functions/expintegrals.py#L134
in the mpmath github repository.
"""
with mp.workdps(dps):
z, a, b = mp.mpf(a), mp.mpf(x), mp.mpf(x)
G = [z]
negb = mp.fneg(b, exact=True)
def h(z):
T1 = [mp.exp(negb), b, z], [1, z, -1], [], G, [1], [1+z], b
return (T1,)
res = mp.hypercomb(h, [z], maxterms=maxterms)
return mpf2float(res)
示例2: zpkfreqz
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import exp [as 别名]
def zpkfreqz(z, p, k, worN=None):
"""
Frequency response of a filter in zpk format, using mpmath.
This is the same calculation as scipy.signal.freqz, but the input is in
zpk format, the calculation is performed using mpath, and the results are
returned in lists instead of numpy arrays.
"""
if worN is None or isinstance(worN, int):
N = worN or 512
ws = [mpmath.pi * mpmath.mpf(j) / N for j in range(N)]
else:
ws = worN
h = []
for wk in ws:
zm1 = mpmath.exp(1j * wk)
numer = _prod([zm1 - t for t in z])
denom = _prod([zm1 - t for t in p])
hk = k * numer / denom
h.append(hk)
return ws, h
示例3: test_loggamma_taylor_transition
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import exp [as 别名]
def test_loggamma_taylor_transition():
# Make sure there isn't a big jump in accuracy when we move from
# using the Taylor series to using the recurrence relation.
r = LOGGAMMA_TAYLOR_RADIUS + np.array([-0.1, -0.01, 0, 0.01, 0.1])
theta = np.linspace(0, 2*np.pi, 20)
r, theta = np.meshgrid(r, theta)
dz = r*np.exp(1j*theta)
z = np.r_[1 + dz, 2 + dz].flatten()
dataset = []
for z0 in z:
dataset.append((z0, complex(mpmath.loggamma(z0))))
dataset = np.array(dataset)
FuncData(sc.loggamma, dataset, 0, 1, rtol=5e-14).check()
示例4: test_loggamma_taylor
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import exp [as 别名]
def test_loggamma_taylor():
# Test around the zeros at z = 1, 2.
r = np.logspace(-16, np.log10(LOGGAMMA_TAYLOR_RADIUS), 10)
theta = np.linspace(0, 2*np.pi, 20)
r, theta = np.meshgrid(r, theta)
dz = r*np.exp(1j*theta)
z = np.r_[1 + dz, 2 + dz].flatten()
dataset = []
for z0 in z:
dataset.append((z0, complex(mpmath.loggamma(z0))))
dataset = np.array(dataset)
FuncData(sc.loggamma, dataset, 0, 1, rtol=5e-14).check()
# ------------------------------------------------------------------------------
# rgamma
# ------------------------------------------------------------------------------
示例5: test_spence_circle
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import exp [as 别名]
def test_spence_circle():
# The trickiest region for spence is around the circle |z - 1| = 1,
# so test that region carefully.
def spence(z):
return complex(mpmath.polylog(2, 1 - z))
r = np.linspace(0.5, 1.5)
theta = np.linspace(0, 2*pi)
z = (1 + np.outer(r, np.exp(1j*theta))).flatten()
dataset = []
for z0 in z:
dataset.append((z0, spence(z0)))
dataset = np.array(dataset)
FuncData(sc.spence, dataset, 0, 1, rtol=1e-14).check()
# ------------------------------------------------------------------------------
# sinpi and cospi
# ------------------------------------------------------------------------------
示例6: test_lanczos_sum_expg_scaled
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import exp [as 别名]
def test_lanczos_sum_expg_scaled(self):
maxgamma = 171.624376956302725
e = np.exp(1)
g = 6.024680040776729583740234375
def gamma(x):
with np.errstate(over='ignore'):
fac = ((x + g - 0.5)/e)**(x - 0.5)
if fac != np.inf:
res = fac*_lanczos_sum_expg_scaled(x)
else:
fac = ((x + g - 0.5)/e)**(0.5*(x - 0.5))
res = fac*_lanczos_sum_expg_scaled(x)
res *= fac
return res
assert_mpmath_equal(gamma,
mpmath.gamma,
[Arg(0, maxgamma, inclusive_a=False)],
rtol=1e-13)
示例7: compute_a
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import exp [as 别名]
def compute_a(sigma, q, lmbd, verbose=False):
lmbd_int = int(math.ceil(lmbd))
if lmbd_int == 0:
return 1.0
a_lambda_first_term_exact = 0
a_lambda_second_term_exact = 0
for i in xrange(lmbd_int + 1):
coef_i = scipy.special.binom(lmbd_int, i) * (q ** i)
s1, s2 = 0, 0
for j in xrange(i + 1):
coef_j = scipy.special.binom(i, j) * (-1) ** (i - j)
s1 += coef_j * np.exp((j * j - j) / (2.0 * (sigma ** 2)))
s2 += coef_j * np.exp((j * j + j) / (2.0 * (sigma ** 2)))
a_lambda_first_term_exact += coef_i * s1
a_lambda_second_term_exact += coef_i * s2
a_lambda_exact = ((1.0 - q) * a_lambda_first_term_exact +
q * a_lambda_second_term_exact)
if verbose:
print "A: by binomial expansion {} = {} + {}".format(
a_lambda_exact,
(1.0 - q) * a_lambda_first_term_exact,
q * a_lambda_second_term_exact)
return _to_np_float64(a_lambda_exact)
开发者ID:SAP-samples,项目名称:machine-learning-diff-private-federated-learning,代码行数:27,代码来源:gaussian_moments.py
示例8: _compute_delta
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import exp [as 别名]
def _compute_delta(log_moments, eps):
"""Compute delta for given log_moments and eps.
Args:
log_moments: the log moments of privacy loss, in the form of pairs
of (moment_order, log_moment)
eps: the target epsilon.
Returns:
delta
"""
min_delta = 1.0
for moment_order, log_moment in log_moments:
if moment_order == 0:
continue
if math.isinf(log_moment) or math.isnan(log_moment):
sys.stderr.write("The %d-th order is inf or Nan\n" % moment_order)
continue
if log_moment < moment_order * eps:
min_delta = min(min_delta,
math.exp(log_moment - moment_order * eps))
return min_delta
开发者ID:SAP-samples,项目名称:machine-learning-diff-private-federated-learning,代码行数:22,代码来源:gaussian_moments.py
示例9: compute_b_mp
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import exp [as 别名]
def compute_b_mp(self, sigma, q, order, verbose=False):
"""Compute B_lambda for arbitrary lambda by numerical integration."""
mu0, _, mu = self._distributions_mp(sigma, q)
b_lambda_fn = lambda z: mu0(z) * (mu0(z) / mu(z)) ** order
b_numeric = self._integral_inf_mp(b_lambda_fn)
if verbose:
_, z1 = rdp_accountant._compute_zs(sigma, q)
print("z1 = ", z1)
print("x in the Taylor series = ", q / (1 - q) * np.exp(
(2 * z1 - 1) / (2 * sigma ** 2)))
b0_numeric = self._integral_bounded_mp(b_lambda_fn, -np.inf, z1)
b1_numeric = self._integral_bounded_mp(b_lambda_fn, z1, +np.inf)
print("B: numerically {} = {} + {}".format(b_numeric, b0_numeric,
b1_numeric))
return float(b_numeric)
示例10: gammaincc
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import exp [as 别名]
def gammaincc(a, x, dps=50, maxterms=10**8):
"""Compute gammaincc exactly like mpmath does but allow for more
terms in hypercomb. See
mpmath/functions/expintegrals.py#L187
in the mpmath github repository.
"""
with mp.workdps(dps):
z, a = a, x
if mp.isint(z):
try:
# mpmath has a fast integer path
return mpf2float(mp.gammainc(z, a=a, regularized=True))
except mp.libmp.NoConvergence:
pass
nega = mp.fneg(a, exact=True)
G = [z]
# Use 2F0 series when possible; fall back to lower gamma representation
try:
def h(z):
r = z-1
return [([mp.exp(nega), a], [1, r], [], G, [1, -r], [], 1/nega)]
return mpf2float(mp.hypercomb(h, [z], force_series=True))
except mp.libmp.NoConvergence:
def h(z):
T1 = [], [1, z-1], [z], G, [], [], 0
T2 = [-mp.exp(nega), a, z], [1, z, -1], [], G, [1], [1+z], a
return T1, T2
return mpf2float(mp.hypercomb(h, [z], maxterms=maxterms))
示例11: _butter_analog_poles
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import exp [as 别名]
def _butter_analog_poles(n):
"""
Poles of an analog Butterworth lowpass filter.
This is the same calculation as scipy.signal.buttap(n) or
scipy.signal.butter(n, 1, analog=True, output='zpk'), but mpmath is used,
and only the poles are returned.
"""
poles = []
for k in range(-n+1, n, 2):
poles.append(-mpmath.exp(1j*mpmath.pi*k/(2*n)))
return poles
示例12: _noncentral_chi_pdf
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import exp [as 别名]
def _noncentral_chi_pdf(t, df, nc):
res = mpmath.besseli(df/2 - 1, mpmath.sqrt(nc*t))
res *= mpmath.exp(-(t + nc)/2)*(t/nc)**(df/4 - 1/2)/2
return res
示例13: test_log
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import exp [as 别名]
def test_log(self):
with mp.workdps(30):
logcoeffs = mp.taylor(lambda x: mp.log(1 + x), 0, 10)
expcoeffs = mp.taylor(lambda x: mp.exp(x) - 1, 0, 10)
invlogcoeffs = lagrange_inversion(logcoeffs)
mp_assert_allclose(invlogcoeffs, expcoeffs)
示例14: test_expi_complex
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import exp [as 别名]
def test_expi_complex():
dataset = []
for r in np.logspace(-99, 2, 10):
for p in np.linspace(0, 2*np.pi, 30):
z = r*np.exp(1j*p)
dataset.append((z, complex(mpmath.ei(z))))
dataset = np.array(dataset, dtype=np.complex_)
FuncData(sc.expi, dataset, 0, 1).check()
# ------------------------------------------------------------------------------
# expn
# ------------------------------------------------------------------------------
示例15: test_igam_fac
# 需要导入模块: import mpmath [as 别名]
# 或者: from mpmath import exp [as 别名]
def test_igam_fac(self):
def mp_igam_fac(a, x):
return mpmath.power(x, a)*mpmath.exp(-x)/mpmath.gamma(a)
assert_mpmath_equal(_igam_fac,
mp_igam_fac,
[Arg(0, 1e14, inclusive_a=False), Arg(0, 1e14)],
rtol=1e-10)