本文整理汇总了Python中mpl_toolkits.axes_grid1.make_axes_locatable方法的典型用法代码示例。如果您正苦于以下问题:Python axes_grid1.make_axes_locatable方法的具体用法?Python axes_grid1.make_axes_locatable怎么用?Python axes_grid1.make_axes_locatable使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mpl_toolkits.axes_grid1
的用法示例。
在下文中一共展示了axes_grid1.make_axes_locatable方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import make_axes_locatable [as 别名]
def __init__(self, winrates_df: pd.DataFrame) -> None:
# make plot
self.winrates = winrates_df
self._fig = plt.figure()
self._ax = self._fig.add_subplot(111)
self._cax = self._ax.imshow(100 * np.array(self.winrates), cmap=cm.seismic, interpolation="none", vmin=0, vmax=100)
x_names = self.winrates.columns
self._ax.set_xticks(list(range(len(x_names))))
self._ax.set_xticklabels(x_names, rotation=90, fontsize=7) # , ha="left")
y_names = self.winrates.index
self._ax.set_yticks(list(range(len(y_names))))
self._ax.set_yticklabels(y_names, rotation=45, fontsize=7)
divider = make_axes_locatable(self._ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
# self._fig.colorbar(im, cax=cax)
self._fig.colorbar(self._cax, cax=cax) # , orientation='horizontal')
plt.tight_layout()
示例2: make_square_add_cbar
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import make_axes_locatable [as 别名]
def make_square_add_cbar(ax, size=0.4, pad=0.1):
"""
Make input axes square and return an appended axes to the right for
a colorbar. Both axes resize together to fit figure automatically.
Works with tight_layout().
"""
divider = make_axes_locatable(ax)
margin_size = axes_size.Fixed(size)
pad_size = axes_size.Fixed(pad)
xsizes = [pad_size, margin_size]
ysizes = xsizes
cax = divider.append_axes("right", size=margin_size, pad=pad_size)
divider.set_horizontal([RemainderFixed(xsizes, ysizes, divider)] + xsizes)
divider.set_vertical([RemainderFixed(xsizes, ysizes, divider)] + ysizes)
return cax
示例3: plot_heatmap
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import make_axes_locatable [as 别名]
def plot_heatmap(heatmap, fig=None, ax=None, legend_axis=None):
if fig is None:
fig = plt.gcf()
if ax is None:
ax = plt.gca()
p, x, y, _ = heatmap
im = ax.imshow(
np.swapaxes(p, 0, 1), # imshow uses first axis as y-axis
extent=[x.min(), x.max(), y.min(), y.max()],
cmap=plt.get_cmap('plasma'),
interpolation='nearest',
aspect='auto',
origin='bottom', # <-- Important! By default top left is (0, 0)
)
if legend_axis is None:
divider = make_axes_locatable(ax)
legend_axis = divider.append_axes('right', size='5%', pad=0.05)
fig.colorbar(im, cax=legend_axis, orientation='vertical')
return im, legend_axis
示例4: plot_vector_field
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import make_axes_locatable [as 别名]
def plot_vector_field(fig, ax, vector_field, skip_rate=1):
skip = (slice(None, None, skip_rate), slice(None, None, skip_rate))
p, dx, dy, x, y, _ = vector_field
im = ax.imshow(
np.swapaxes(p, 0, 1), # imshow uses first axis as y-axis
extent=[x.min(), x.max(), y.min(), y.max()],
cmap=plt.get_cmap('plasma'),
interpolation='nearest',
aspect='auto',
origin='bottom', # <-- Important! By default top left is (0, 0)
)
x, y = np.meshgrid(x, y)
ax.quiver(x[skip], y[skip], dx[skip], dy[skip])
divider = make_axes_locatable(ax)
cax = divider.append_axes('right', size='5%', pad=0.05)
fig.colorbar(im, cax=cax, orientation='vertical')
示例5: _process_metric
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import make_axes_locatable [as 别名]
def _process_metric(self, ax, metric):
if not metric.data.size:
ax.tick_params(colors=(0, 0, 0, 0))
ax.set_axis_bgcolor(cm.get_cmap('viridis')(0))
divider = make_axes_locatable(ax)
divider.append_axes('right', size='7%', pad=0.1).axis('off')
return
domain = self._domain(metric)
categorical = self._is_categorical(metric.data)
if metric.data.shape[1] == 1 and not categorical:
self._plot_scalar(ax, domain, metric.data[:, 0])
elif metric.data.shape[1] == 1:
indices = metric.data[:, 0].astype(int)
min_, max_ = indices.min(), indices.max()
count = np.eye(max_ - min_ + 1)[indices - min_]
self._plot_distribution(ax, domain, count)
elif metric.data.shape[1] > 1:
self._plot_counts(ax, domain, metric.data)
示例6: ex3
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import make_axes_locatable [as 别名]
def ex3():
fig = plt.figure(3)
ax1 = plt.axes([0, 0, 1, 1])
divider = make_axes_locatable(ax1)
ax2 = divider.new_horizontal("100%", pad=0.3, sharey=ax1)
ax2.tick_params(labelleft=False)
fig.add_axes(ax2)
divider.add_auto_adjustable_area(use_axes=[ax1], pad=0.1,
adjust_dirs=["left"])
divider.add_auto_adjustable_area(use_axes=[ax2], pad=0.1,
adjust_dirs=["right"])
divider.add_auto_adjustable_area(use_axes=[ax1, ax2], pad=0.1,
adjust_dirs=["top", "bottom"])
ax1.set_yticks([0.5])
ax1.set_yticklabels(["very long label"])
ax2.set_title("Title")
ax2.set_xlabel("X - Label")
示例7: plot_cells
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import make_axes_locatable [as 别名]
def plot_cells(state_cells, walls_inf, i):
"""
plot the actual state of the cells. we need to make 'bad' walls to better visualize the cells
:param state_cells: state of the cells
:param walls_inf: walls for visualisation purposes
:param i: index for figures
"""
walls_inf = walls_inf * np.Inf
tmp_cells = np.vstack((walls_inf, state_cells))
tmp_cells = np.vstack((tmp_cells, walls_inf))
fig = plt.figure()
ax = fig.add_subplot(111)
ax.cla()
cmap = plt.get_cmap('gray')
cmap.set_bad(color='k', alpha=0.8)
im = ax.imshow(tmp_cells, cmap=cmap, vmin=0, vmax=1, interpolation='nearest')
divider = make_axes_locatable(ax)
cax = divider.append_axes('right', size='1%', pad=0.1)
plt.colorbar(im, cax=cax, ticks=[0, 1])
ax.set_axis_off()
num = sum(state_cells)
text = "t: %3.3d | n: %d\n" % (i, num)
plt.title("%20s" % text, rotation=0, fontsize=10, verticalalignment='bottom')
figure_name = os.path.join('pngs', 'peds%.3d.png' % i)
plt.savefig(figure_name, dpi=100, facecolor='lightgray')
示例8: drawplot
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import make_axes_locatable [as 别名]
def drawplot(self, img, img_name, itr, index, bodyparts, cmap, keep_view=False):
xlim = self.axes.get_xlim()
ylim = self.axes.get_ylim()
self.axes.clear()
# im = cv2.imread(img)
# convert the image to RGB as you are showing the image with matplotlib
im = cv2.imread(img)[..., ::-1]
ax = self.axes.imshow(im, cmap=cmap)
self.orig_xlim = self.axes.get_xlim()
self.orig_ylim = self.axes.get_ylim()
# divider = make_axes_locatable(self.axes)
# colorIndex = np.linspace(np.min(im),np.max(im),len(bodyparts))
# cax = divider.append_axes("right", size="5%", pad=0.05)
# cbar = self.figure.colorbar(ax, cax=cax,spacing='proportional', ticks=colorIndex)
# cbar.set_ticklabels(bodyparts[::-1])
self.axes.set_title(str(str(itr) + "/" + str(len(index) - 1) + " " + img_name))
# self.figure.canvas.draw()
if keep_view:
self.axes.set_xlim(xlim)
self.axes.set_ylim(ylim)
self.toolbar = NavigationToolbar(self.canvas)
return (self.figure, self.axes, self.canvas, self.toolbar, ax)
示例9: drawplot
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import make_axes_locatable [as 别名]
def drawplot(self, img, img_name, itr, index, bodyparts, cmap, keep_view=False):
xlim = self.axes.get_xlim()
ylim = self.axes.get_ylim()
self.axes.clear()
# convert the image to RGB as you are showing the image with matplotlib
im = cv2.imread(img)[..., ::-1]
ax = self.axes.imshow(im, cmap=cmap)
self.orig_xlim = self.axes.get_xlim()
self.orig_ylim = self.axes.get_ylim()
divider = make_axes_locatable(self.axes)
colorIndex = np.linspace(np.min(im), np.max(im), len(bodyparts))
cax = divider.append_axes("right", size="5%", pad=0.05)
cbar = self.figure.colorbar(
ax, cax=cax, spacing="proportional", ticks=colorIndex
)
cbar.set_ticklabels(bodyparts[::-1])
self.axes.set_title(str(str(itr) + "/" + str(len(index) - 1) + " " + img_name))
if keep_view:
self.axes.set_xlim(xlim)
self.axes.set_ylim(ylim)
self.toolbar = NavigationToolbar(self.canvas)
return (self.figure, self.axes, self.canvas, self.toolbar)
示例10: show_word_score_heatmap
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import make_axes_locatable [as 别名]
def show_word_score_heatmap(score_tensor, x_ticks, y_ticks, figsize=(3, 8)):
# to make colorbar a proper size w.r.t the image
def colorbar(mappable):
ax = mappable.axes
fig = ax.figure
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="10%", pad=0.1)
return fig.colorbar(mappable, cax=cax)
mpl.rcParams['font.sans-serif'] = ['simhei']
mpl.rcParams['axes.unicode_minus'] = False
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=figsize)
img = ax.matshow(score_tensor.numpy())
plt.xticks(range(score_tensor.size(1)), x_ticks, fontsize=14)
plt.yticks(range(score_tensor.size(0)), y_ticks, fontsize=14)
colorbar(img)
ax.set_aspect('auto')
plt.show()
示例11: plot_image
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import make_axes_locatable [as 别名]
def plot_image(data, vmin=None, vmax=None, colorbar=True, cmap="gray"):
"""
Plot image data, such as RTM images or FWI gradients.
Parameters
----------
data : ndarray
Image data to plot.
cmap : str
Choice of colormap. Defaults to gray scale for images as a
seismic convention.
"""
plot = plt.imshow(np.transpose(data),
vmin=vmin or 0.9 * np.min(data),
vmax=vmax or 1.1 * np.max(data),
cmap=cmap)
# Create aligned colorbar on the right
if colorbar:
ax = plt.gca()
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
plt.colorbar(plot, cax=cax)
plt.show()
示例12: plot_similarity_matrix
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import make_axes_locatable [as 别名]
def plot_similarity_matrix(matrix, labels_a=None, labels_b=None, ax: plt.Axes=None, title=""):
if ax is None:
_, ax = plt.subplots()
fig = plt.gcf()
img = ax.matshow(matrix, extent=(-0.5, matrix.shape[0] - 0.5,
-0.5, matrix.shape[1] - 0.5))
ax.xaxis.set_ticks_position("bottom")
if labels_a is not None:
ax.set_xticks(range(len(labels_a)))
ax.set_xticklabels(labels_a, rotation=90)
if labels_b is not None:
ax.set_yticks(range(len(labels_b)))
ax.set_yticklabels(labels_b[::-1]) # Upper origin -> reverse y axis
ax.set_title(title)
cax = make_axes_locatable(ax).append_axes("right", size="5%", pad=0.15)
fig.colorbar(img, cax=cax, ticks=np.linspace(0.4, 1, 7))
img.set_clim(0.4, 1)
img.set_cmap("inferno")
return ax
示例13: plot2D_correlation
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import make_axes_locatable [as 别名]
def plot2D_correlation(self, plotFig, plotAx, data_x, data_y, corr):
plotAx.cla() #clear the figure
plotAx.patch.set_facecolor('none') #remove figure background
try:
plotFig.delaxes(plotFig.axes[1])
except:
pass
#plotAx.mappable = plotAx.contourf(data_x, data_y, corr, np.linspace(0, 1, 9), cmap = 'Spectral', extend='min', spacing='proportional')
plotAx.mappable = plotAx.imshow(corr, cmap = 'RdBu')
plotAx.mappable.axes.xaxis.set_ticklabels([])
plotAx.mappable.axes.yaxis.set_ticklabels([])
plotAx.invert_yaxis()
#colorbar display
divider = make_axes_locatable(plotAx)
plotAx.cax = divider.append_axes('right', size='5%', pad='1%')
plotAx.cbar = plotFig.colorbar(plotAx.mappable, cax=plotAx.cax, extend='min')
plotAx.cbar.ax.tick_params(labelsize=7)
labels = np.linspace(0, 1, 11)
ticks = np.linspace(-0.1, 0.1, 11)
plotAx.cbar.set_ticks(ticks)
plotAx.cbar.set_ticklabels(labels)
示例14: test_plain_axes
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import make_axes_locatable [as 别名]
def test_plain_axes(self):
# supplied ax itself is a SubplotAxes, but figure contains also
# a plain Axes object (GH11556)
fig, ax = self.plt.subplots()
fig.add_axes([0.2, 0.2, 0.2, 0.2])
Series(rand(10)).plot(ax=ax)
# suppliad ax itself is a plain Axes, but because the cmap keyword
# a new ax is created for the colorbar -> also multiples axes (GH11520)
df = DataFrame({'a': randn(8), 'b': randn(8)})
fig = self.plt.figure()
ax = fig.add_axes((0, 0, 1, 1))
df.plot(kind='scatter', ax=ax, x='a', y='b', c='a', cmap='hsv')
# other examples
fig, ax = self.plt.subplots()
from mpl_toolkits.axes_grid1 import make_axes_locatable
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
Series(rand(10)).plot(ax=ax)
Series(rand(10)).plot(ax=cax)
fig, ax = self.plt.subplots()
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
iax = inset_axes(ax, width="30%", height=1., loc=3)
Series(rand(10)).plot(ax=ax)
Series(rand(10)).plot(ax=iax)
示例15: plot_line_power
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import make_axes_locatable [as 别名]
def plot_line_power(obj, results, hour, ax=None):
'''
obj: case or network
'''
if ax is None:
fig, ax = plt.subplots(1, 1, figsize=(16, 10))
ax.axis('off')
case, network = _return_case_network(obj)
network.draw_buses(ax=ax)
network.draw_loads(ax=ax)
network.draw_generators(ax=ax)
network.draw_connections('gen_to_bus', ax=ax)
network.draw_connections('load_to_bus', ax=ax)
edgelist, edge_color, edge_width, edge_labels = _generate_edges(results, case, hour)
branches = network.draw_branches(ax=ax, edgelist=edgelist, edge_color=edge_color, width=edge_width, edge_labels=edge_labels)
divider = make_axes_locatable(ax)
cax = divider.append_axes('right', size='5%', pad=0.05)
cb = plt.colorbar(branches, cax=cax, orientation='vertical')
cax.yaxis.set_label_position('left')
cax.yaxis.set_ticks_position('left')
cb.set_label('Loading Factor')
return ax