本文整理汇总了Python中mpl_toolkits.axes_grid1.ImageGrid方法的典型用法代码示例。如果您正苦于以下问题:Python axes_grid1.ImageGrid方法的具体用法?Python axes_grid1.ImageGrid怎么用?Python axes_grid1.ImageGrid使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mpl_toolkits.axes_grid1
的用法示例。
在下文中一共展示了axes_grid1.ImageGrid方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: demo_simple_grid
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import ImageGrid [as 别名]
def demo_simple_grid(fig):
"""
A grid of 2x2 images with 0.05 inch pad between images and only
the lower-left axes is labeled.
"""
grid = ImageGrid(fig, 141, # similar to subplot(141)
nrows_ncols=(2, 2),
axes_pad=0.05,
label_mode="1",
)
Z, extent = get_demo_image()
for i in range(4):
im = grid[i].imshow(Z, extent=extent, interpolation="nearest")
# This only affects axes in first column and second row as share_all =
# False.
grid.axes_llc.set_xticks([-2, 0, 2])
grid.axes_llc.set_yticks([-2, 0, 2])
示例2: demo_grid_with_single_cbar
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import ImageGrid [as 别名]
def demo_grid_with_single_cbar(fig):
"""
A grid of 2x2 images with a single colorbar
"""
grid = ImageGrid(fig, 142, # similar to subplot(142)
nrows_ncols=(2, 2),
axes_pad=0.0,
share_all=True,
label_mode="L",
cbar_location="top",
cbar_mode="single",
)
Z, extent = get_demo_image()
for i in range(4):
im = grid[i].imshow(Z, extent=extent, interpolation="nearest")
grid.cbar_axes[0].colorbar(im)
for cax in grid.cbar_axes:
cax.toggle_label(False)
# This affects all axes as share_all = True.
grid.axes_llc.set_xticks([-2, 0, 2])
grid.axes_llc.set_yticks([-2, 0, 2])
示例3: imshow_grid
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import ImageGrid [as 别名]
def imshow_grid(images, shape=[2, 8], name='default', save=False):
"""
Plot images in a grid of a given shape.
Initial code from: https://github.com/pumpikano/tf-dann/blob/master/utils.py
"""
fig = plt.figure(1)
grid = ImageGrid(fig, 111, nrows_ncols=shape, axes_pad=0.05)
size = shape[0] * shape[1]
for i in range(size):
grid[i].axis('off')
grid[i].imshow(images[i]) # The AxesGrid object work as a list of axes.
if save:
plt.savefig('reconstructed_images/' + str(name) + '.png')
plt.clf()
else:
plt.show()
示例4: show_samples
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import ImageGrid [as 别名]
def show_samples(images, row, col, image_shape, name="Unknown", save=True, shift=False):
num_images = row*col
if shift:
images = (images+1.)/2.
fig = plt.figure(figsize=(col, row))
grid = ImageGrid(fig, 111,
nrows_ncols=(row, col),
axes_pad=0.)
for i in xrange(num_images):
im = images[i].reshape(image_shape)
axis = grid[i]
axis.axis('off')
axis.imshow(im)
plt.axis('off')
plt.tight_layout()
if save:
fig.savefig('figs/train/grid/'+name+'.png', bbox_inches="tight", pad_inches=0, format='png')
else:
plt.show()
#From some github code
示例5: plot_matrix
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import ImageGrid [as 别名]
def plot_matrix(A,cbar_location='right',figsize=(18,18),cmap='coolwarm',fname=None):
fig = plt.figure(figsize=figsize)
axes = ImageGrid(fig, 111, # similar to subplot(111)
nrows_ncols=(1,1),
axes_pad=2.0,
add_all=True,
label_mode="L",
cbar_mode = 'each',
cbar_location = cbar_location,
cbar_pad='2%'
)
im = axes[0].imshow(A,cmap=cmap,interpolation='none')
axes.cbar_axes[0].colorbar(im)
if fname is None:
plt.show()
else:
plt.savefig(fname)
return fig,axes
示例6: plotFields
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import ImageGrid [as 别名]
def plotFields(layer,fieldShape=None,channel=None,figOffset=1,cmap=None,padding=0.01):
# Receptive Fields Summary
try:
W = layer.W
except:
W = layer
wp = W.eval().transpose();
if len(np.shape(wp)) < 4: # Fully connected layer, has no shape
fields = np.reshape(wp,list(wp.shape[0:-1])+fieldShape)
else: # Convolutional layer already has shape
features, channels, iy, ix = np.shape(wp)
if channel is not None:
fields = wp[:,channel,:,:]
else:
fields = np.reshape(wp,[features*channels,iy,ix])
perRow = int(math.floor(math.sqrt(fields.shape[0])))
perColumn = int(math.ceil(fields.shape[0]/float(perRow)))
fig = mpl.figure(figOffset); mpl.clf()
# Using image grid
from mpl_toolkits.axes_grid1 import ImageGrid
grid = ImageGrid(fig,111,nrows_ncols=(perRow,perColumn),axes_pad=padding,cbar_mode='single')
for i in range(0,np.shape(fields)[0]):
im = grid[i].imshow(fields[i],cmap=cmap);
grid.cbar_axes[0].colorbar(im)
mpl.title('%s Receptive Fields' % layer.name)
# old way
# fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))])
# tiled = []
# for i in range(0,perColumn*perRow,perColumn):
# tiled.append(np.hstack(fields2[i:i+perColumn]))
#
# tiled = np.vstack(tiled)
# mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Receptive Fields' % layer.name); mpl.colorbar();
mpl.figure(figOffset+1); mpl.clf(); mpl.imshow(np.sum(np.abs(fields),0),cmap=cmap); mpl.title('%s Total Absolute Input Dependency' % layer.name); mpl.colorbar()
示例7: plotFields
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import ImageGrid [as 别名]
def plotFields(layer,fieldShape=None,channel=None,maxFields=25,figName='ReceptiveFields',cmap=None,padding=0.01):
# Receptive Fields Summary
W = layer.W
wp = W.eval().transpose();
if len(np.shape(wp)) < 4: # Fully connected layer, has no shape
fields = np.reshape(wp,list(wp.shape[0:-1])+fieldShape)
else: # Convolutional layer already has shape
features, channels, iy, ix = np.shape(wp)
if channel is not None:
fields = wp[:,channel,:,:]
else:
fields = np.reshape(wp,[features*channels,iy,ix])
fieldsN = min(fields.shape[0],maxFields)
perRow = int(math.floor(math.sqrt(fieldsN)))
perColumn = int(math.ceil(fieldsN/float(perRow)))
fig = mpl.figure(figName); mpl.clf()
# Using image grid
from mpl_toolkits.axes_grid1 import ImageGrid
grid = ImageGrid(fig,111,nrows_ncols=(perRow,perColumn),axes_pad=padding,cbar_mode='single')
for i in range(0,fieldsN):
im = grid[i].imshow(fields[i],cmap=cmap);
grid.cbar_axes[0].colorbar(im)
mpl.title('%s Receptive Fields' % layer.name)
# old way
# fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))])
# tiled = []
# for i in range(0,perColumn*perRow,perColumn):
# tiled.append(np.hstack(fields2[i:i+perColumn]))
#
# tiled = np.vstack(tiled)
# mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Receptive Fields' % layer.name); mpl.colorbar();
mpl.figure(figName+' Total'); mpl.clf(); mpl.imshow(np.sum(np.abs(fields),0),cmap=cmap); mpl.title('%s Total Absolute Input Dependency' % layer.name); mpl.colorbar()
示例8: imshow_grid
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import ImageGrid [as 别名]
def imshow_grid(images, shape=[2, 8]):
"""Plot images in a grid of a given shape."""
fig = plt.figure(1)
grid = ImageGrid(fig, 111, nrows_ncols=shape, axes_pad=0.05)
n_dim = np.shape(images)
size = shape[0] * shape[1]
for i in range(size):
grid[i].axis('off')
if len(n_dim)<=3:
grid[i].imshow(images[i], cmap=plt.get_cmap('gray')) # The AxesGrid object work as a list of axes.
else:
grid[i].imshow(images[i])
plt.show()
示例9: demo_grid_with_each_cbar
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import ImageGrid [as 别名]
def demo_grid_with_each_cbar(fig):
"""
A grid of 2x2 images. Each image has its own colorbar.
"""
grid = ImageGrid(fig, 143, # similar to subplot(143)
nrows_ncols=(2, 2),
axes_pad=0.1,
label_mode="1",
share_all=True,
cbar_location="top",
cbar_mode="each",
cbar_size="7%",
cbar_pad="2%",
)
Z, extent = get_demo_image()
for i in range(4):
im = grid[i].imshow(Z, extent=extent, interpolation="nearest")
grid.cbar_axes[i].colorbar(im)
for cax in grid.cbar_axes:
cax.toggle_label(False)
# This affects all axes because we set share_all = True.
grid.axes_llc.set_xticks([-2, 0, 2])
grid.axes_llc.set_yticks([-2, 0, 2])
示例10: demo_grid_with_each_cbar_labelled
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import ImageGrid [as 别名]
def demo_grid_with_each_cbar_labelled(fig):
"""
A grid of 2x2 images. Each image has its own colorbar.
"""
grid = ImageGrid(fig, 144, # similar to subplot(144)
nrows_ncols=(2, 2),
axes_pad=(0.45, 0.15),
label_mode="1",
share_all=True,
cbar_location="right",
cbar_mode="each",
cbar_size="7%",
cbar_pad="2%",
)
Z, extent = get_demo_image()
# Use a different colorbar range every time
limits = ((0, 1), (-2, 2), (-1.7, 1.4), (-1.5, 1))
for i in range(4):
im = grid[i].imshow(Z, extent=extent, interpolation="nearest",
vmin=limits[i][0], vmax=limits[i][1])
grid.cbar_axes[i].colorbar(im)
for i, cax in enumerate(grid.cbar_axes):
cax.set_yticks((limits[i][0], limits[i][1]))
# This affects all axes because we set share_all = True.
grid.axes_llc.set_xticks([-2, 0, 2])
grid.axes_llc.set_yticks([-2, 0, 2])
示例11: show_images
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import ImageGrid [as 别名]
def show_images(H):
# make a square grid
num = H.shape[0]
rows = int(np.ceil(np.sqrt(float(num))))
fig = plt.figure(1, [10, 10])
grid = ImageGrid(fig, 111, nrows_ncols=[rows, rows])
for i in range(num):
grid[i].axis('off')
grid[i].imshow(H[i], cmap='Greys')
# Turn any unused axes off
for j in range(i, len(grid)):
grid[j].axis('off')
示例12: save_imshow_grid
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import ImageGrid [as 别名]
def save_imshow_grid(images, logs_dir, filename, shape):
"""
Plot images in a grid of a given shape.
"""
fig = plt.figure(1)
grid = ImageGrid(fig, 111, nrows_ncols=shape, axes_pad=0.05)
size = shape[0] * shape[1]
for i in trange(size, desc="Saving images"):
grid[i].axis('off')
grid[i].imshow(images[i])
plt.savefig(os.path.join(logs_dir, filename))
示例13: save_imshow_grid
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import ImageGrid [as 别名]
def save_imshow_grid(images, train_dir, filename, shape):
"""
Plot images in a grid of a given shape.
"""
fig = plt.figure(1)
grid = ImageGrid(fig, 111, nrows_ncols=shape, axes_pad=0.05)
size = shape[0] * shape[1]
for i in trange(size, desc="Saving images"):
grid[i].axis('off')
grid[i].imshow(images[i])
plt.savefig(os.path.join(train_dir, filename))
示例14: plot_image_grid
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import ImageGrid [as 别名]
def plot_image_grid(images, num_rows, num_cols, save_path=None):
"""Plots images in a grid.
Parameters
----------
images : numpy.ndarray
Images to display, with shape
``(num_rows * num_cols, num_channels, height, width)``.
num_rows : int
Number of rows for the image grid.
num_cols : int
Number of columns for the image grid.
save_path : str, optional
Where to save the image grid. Defaults to ``None``,
which causes the grid to be displayed on screen.
"""
figure = pyplot.figure()
grid = ImageGrid(figure, 111, (num_rows, num_cols), axes_pad=0.1)
for image, axis in zip(images, grid):
axis.imshow(image.transpose(1, 2, 0), interpolation='nearest')
axis.set_yticklabels(['' for _ in range(image.shape[1])])
axis.set_xticklabels(['' for _ in range(image.shape[2])])
axis.axis('off')
if save_path is None:
pyplot.show()
else:
pyplot.savefig(save_path, transparent=True, bbox_inches='tight',dpi=212)
pyplot.close()
示例15: imshow_grid
# 需要导入模块: from mpl_toolkits import axes_grid1 [as 别名]
# 或者: from mpl_toolkits.axes_grid1 import ImageGrid [as 别名]
def imshow_grid(images, shape=[2, 8], name='default', save=False):
"""Plot images in a grid of a given shape."""
fig = plt.figure(1)
grid = ImageGrid(fig, 111, nrows_ncols=shape, axes_pad=0.05)
size = shape[0] * shape[1]
for i in range(size):
grid[i].axis('off')
grid[i].imshow(images[i]) # The AxesGrid object work as a list of axes.
if save:
plt.savefig('reconstructed_images/' + str(name) + '.png')
plt.clf()
else:
plt.show()