当前位置: 首页>>代码示例>>Python>>正文


Python crnn.parameters方法代码示例

本文整理汇总了Python中models.crnn.parameters方法的典型用法代码示例。如果您正苦于以下问题:Python crnn.parameters方法的具体用法?Python crnn.parameters怎么用?Python crnn.parameters使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在models.crnn的用法示例。


在下文中一共展示了crnn.parameters方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: training

# 需要导入模块: from models import crnn [as 别名]
# 或者: from models.crnn import parameters [as 别名]
def training(start):
    for total_steps in range(start, params.niter):
        train_iter = iter(train_loader)
        i = 0
        print(len(train_loader))
        while i < len(train_loader):
            for p in crnn.parameters():
                p.requires_grad = True
            crnn.train()
            cost = trainBatch(crnn, criterion, optimizer, train_iter)
            loss_avg.add(cost)
            i += 1
            if i % params.displayInterval == 0:
                print('[%d/%d][%d/%d] Loss: %f' %
                      (total_steps, params.niter, i, len(train_loader), loss_avg.val()))
                loss_avg.reset()
            if i % params.valInterval == 0:
                val(crnn, test_dataset, criterion)
        if (total_steps + 1) % params.saveInterval == 0:
            # if i % params.valInterval == 0:
            print('save model ..........')
            ti = time.strftime('%Y-%m-%d', time.localtime(time.time()))
            torch.save(crnn.state_dict(),
                       '{0}/crnn_Rec_done_{1}_{2}.pth'.format(params.experiment, total_steps, ti))
            print('save model done') 
开发者ID:hwwu,项目名称:ctpn-crnn,代码行数:27,代码来源:crnn_main.py

示例2: trainBatch

# 需要导入模块: from models import crnn [as 别名]
# 或者: from models.crnn import parameters [as 别名]
def trainBatch(net, optimizer):
    data = train_iter.next()
    cpu_images, cpu_texts = data
    batch_size = cpu_images.size(0)
    utils.loadData(image, cpu_images)
    t, l = converter.encode(cpu_texts)
    utils.loadData(text, t)
    utils.loadData(length, l)

    preds = crnn(image)
    preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))
    H, cost = seg_ctc_ent_cost(preds, text, preds_size, length, uni_rate=opt.uni_rate)
    h_cost = (1-opt.h_rate)*cost-opt.h_rate*H
    cost_sum = h_cost.data.sum()
    inf = float("inf")
    if cost_sum == inf or cost_sum == -inf or cost_sum > 200*batch_size:
        print("Warning: received an inf loss, setting loss value to 0")
        return torch.zeros(H.size()), torch.zeros(cost.size()), torch.zeros(h_cost.size())

    crnn.zero_grad()
    h_cost.backward()
    torch.nn.utils.clip_grad_norm(crnn.parameters(), opt.max_norm)
    optimizer.step()
    return H / batch_size, cost / batch_size, h_cost / batch_size 
开发者ID:liuhu-bigeye,项目名称:enctc.crnn,代码行数:26,代码来源:crnn_main_seg.py

示例3: val

# 需要导入模块: from models import crnn [as 别名]
# 或者: from models.crnn import parameters [as 别名]
def val(net, dataset, criterion, max_iter=100):
    print('Start val')

    for p in crnn.parameters():
        p.requires_grad = False

    net.eval()
    data_loader = torch.utils.data.DataLoader(
        dataset, shuffle=True, batch_size=opt.batchSize, num_workers=int(opt.workers))
    val_iter = iter(data_loader)

    i = 0
    n_correct = 0
    loss_avg = utils.averager()

    max_iter = min(max_iter, len(data_loader))
    for i in range(max_iter):
        data = val_iter.next()
        i += 1
        cpu_images, cpu_texts = data
        batch_size = cpu_images.size(0)
        utils.loadData(image, cpu_images)
        t, l = converter.encode(cpu_texts)
        utils.loadData(text, t)
        utils.loadData(length, l)

        preds = crnn(image) # size = 26, 64, 96
        # print(preds.size())
        preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))
        cost = criterion(preds, text, preds_size, length) / batch_size
        loss_avg.add(cost)

        _, preds = preds.max(2) # size = 26, 64
        # print(preds.size())
        # preds = preds.squeeze(2)
        preds = preds.transpose(1, 0).contiguous().view(-1)
        sim_preds = converter.decode(preds.data, preds_size.data, raw=False)
        for pred, target in zip(sim_preds, cpu_texts):
            if pred == target.lower():
                n_correct += 1

    raw_preds = converter.decode(preds.data, preds_size.data, raw=True)[:opt.n_test_disp]
    for raw_pred, pred, gt in zip(raw_preds, sim_preds, cpu_texts):
        print('%-30s => %-30s, gt: %-30s' % (raw_pred, pred, gt))

    accuracy = n_correct / float(max_iter * opt.batchSize)
    print('Test loss: %f, accuray: %f' % (loss_avg.val(), accuracy)) 
开发者ID:zzzDavid,项目名称:ICDAR-2019-SROIE,代码行数:49,代码来源:train.py

示例4: val

# 需要导入模块: from models import crnn [as 别名]
# 或者: from models.crnn import parameters [as 别名]
def val(net, dataset, criterion, max_iter=100):
    #print('Start val')

    for p in crnn.parameters():
        p.requires_grad = False

    net.eval()
    data_loader = torch.utils.data.DataLoader(dataset, shuffle=True, batch_size=params.batchSize, num_workers=int(params.workers))
    val_iter = iter(data_loader)

    i = 0
    n_correct = 0
    loss_avg = utils.averager()

    max_iter = min(max_iter, len(data_loader))
    for i in range(max_iter):
        data = val_iter.next()
        i += 1
        cpu_images, cpu_texts = data
        batch_size = cpu_images.size(0)
        utils.loadData(image, cpu_images)
        t, l = converter.encode(cpu_texts)
        utils.loadData(text, t)
        utils.loadData(length, l)

        preds = crnn(image)
        preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))
        cost = criterion(preds, text, preds_size, length)
        loss_avg.add(cost)

        _, preds = preds.max(2)
        preds = preds.transpose(1, 0).contiguous().view(-1)
        sim_preds = converter.decode(preds.data, preds_size.data, raw=False)
        #cpu_texts_decode = []
        #for i in cpu_texts:
        #    cpu_texts_decode.append(i.decode('utf-8', 'strict'))
        for pred, target in zip(sim_preds, cpu_texts):
            if pred == target:
                n_correct += 1

    raw_preds = converter.decode(preds.data, preds_size.data, raw=True)[:params.n_test_disp]
    for raw_pred, pred, gt in zip(raw_preds, sim_preds, cpu_texts):
        print('%-20s => %-20s, gt: %-20s' % (raw_pred, pred, gt))

    accuracy = n_correct / float(max_iter * params.batchSize)
    print('loss: %f, accuray: %f' % (loss_avg.val(), accuracy))
    return loss_avg.val(), accuracy 
开发者ID:rahzaazhar,项目名称:PAN-PSEnet,代码行数:49,代码来源:train.py

示例5: val

# 需要导入模块: from models import crnn [as 别名]
# 或者: from models.crnn import parameters [as 别名]
def val(net, dataset, criterion, max_iter=100):
    print('Start val')

    for p in crnn.parameters():
        p.requires_grad = False

    net.eval()
    data_loader = torch.utils.data.DataLoader(
        dataset, shuffle=True, batch_size=opt.batchSize, num_workers=int(opt.workers))
    val_iter = iter(data_loader)

    i = 0
    n_correct = 0
    loss_avg = utils.averager()

    max_iter = min(max_iter, len(data_loader))
    for i in range(max_iter):
        data = val_iter.next()
        i += 1
        cpu_images, cpu_texts = data
        batch_size = cpu_images.size(0)
        utils.loadData(image, cpu_images)
        t, l = converter.encode(cpu_texts)
        utils.loadData(text, t)
        utils.loadData(length, l)

        preds = crnn(image)
        preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))
        cost = criterion(preds, text, preds_size, length) / batch_size
        loss_avg.add(cost)

        _, preds = preds.max(2)
        preds = preds.squeeze(2)
        preds = preds.transpose(1, 0).contiguous().view(-1)
        sim_preds = converter.decode(preds.data, preds_size.data, raw=False)
        for pred, target in zip(sim_preds, cpu_texts):
            if pred == target.lower():
                n_correct += 1

    raw_preds = converter.decode(preds.data, preds_size.data, raw=True)[:opt.n_test_disp]
    for raw_pred, pred, gt in zip(raw_preds, sim_preds, cpu_texts):
        print('%-20s => %-20s, gt: %-20s' % (raw_pred, pred, gt))

    accuracy = n_correct / float(max_iter * opt.batchSize)
    print('Test loss: %f, accuray: %f' % (loss_avg.val(), accuracy)) 
开发者ID:meijieru,项目名称:crnn.pytorch,代码行数:47,代码来源:train.py

示例6: val

# 需要导入模块: from models import crnn [as 别名]
# 或者: from models.crnn import parameters [as 别名]
def val(net, dataset, criterion, max_iter=100):
    print('Start val')

    for p in crnn.parameters():
        p.requires_grad = False

    net.eval()
    data_loader = torch.utils.data.DataLoader(
        dataset, shuffle=True, batch_size=opt.batchSize, num_workers=int(opt.workers))
    val_iter = iter(data_loader)

    i = 0
    n_correct = 0
    loss_avg = utils.averager()

    max_iter = min(max_iter, len(data_loader))
    for i in range(max_iter):
        data = val_iter.next()
        i += 1
        cpu_images, cpu_texts = data
        batch_size = cpu_images.size(0)
        utils.loadData(image, cpu_images)
        t, l = converter.encode(cpu_texts)
        utils.loadData(text, t)
        utils.loadData(length, l)

        preds = crnn(image)
        preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))
        cost = criterion(preds, text, preds_size, length) / batch_size
        loss_avg.add(cost)

        _, preds = preds.max(2)
        preds = preds.squeeze(2)
        preds = preds.transpose(1, 0).contiguous().view(-1)
        sim_preds = converter.decode(preds.data, preds_size.data, raw=False)
        for pred, target in zip(sim_preds, cpu_texts):
            if pred == target:
                n_correct += 1

    raw_preds = converter.decode(preds.data, preds_size.data, raw=True)[:opt.n_test_disp]
    for raw_pred, pred, gt in zip(raw_preds, sim_preds, cpu_texts):
        
        print('%-20s => %-20s, gt: %-20s' % (raw_pred.encode('utf-8'), pred.encode('utf-8'), gt.encode('utf-8')))

    accuracy = n_correct / float(max_iter * opt.batchSize)
    print('Test loss: %f, accuray: %f' % (loss_avg.val(), accuracy)) 
开发者ID:YoungMiao,项目名称:crnn,代码行数:48,代码来源:crnn_main.py

示例7: val

# 需要导入模块: from models import crnn [as 别名]
# 或者: from models.crnn import parameters [as 别名]
def val(net, dataset, criterion, max_iter=100):
    print('Start val')
    for p in crnn.parameters():
        p.requires_grad = False
    net.eval()
    data_loader = torch.utils.data.DataLoader(
        dataset, shuffle=True, batch_size=params.batchSize, num_workers=int(params.workers))
    val_iter = iter(data_loader)
    i = 0
    n_correct = 0
    loss_avg = utils.averager()

    max_iter = min(max_iter, len(data_loader))
    for i in range(max_iter):
        data = val_iter.next()
        i += 1
        cpu_images, cpu_texts = data
        batch_size = cpu_images.size(0)
        utils.loadData(image, cpu_images)
        t, l = converter.encode(cpu_texts)
        utils.loadData(text, t)
        utils.loadData(length, l)
        preds = crnn(image)
        # print('-----preds-----')
        # print(preds)
        preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))
        # print('-----preds_size-----')
        # print(preds_size)
        cost = criterion(preds, text, preds_size, length) / batch_size
        loss_avg.add(cost)
        _, preds = preds.max(2)
        # print('-----preds.max(2)-----')
        # print(preds)
        preds = preds.transpose(1, 0).contiguous().view(-1)
        # print('-----preds.transpose(1, 0)-----')
        # print(preds)
        sim_preds = converter.decode(preds.data, preds_size.data, raw=False)

        list_1 = []
        for m in cpu_texts:
            list_1.append(m.decode('utf-8', 'strict'))

        # if (i - 1) % 10 == 0:
        # print('-----sim_preds-----list_1-----')
        # print(sim_preds, list_1)
        for pred, target in zip(sim_preds, list_1):
            if pred == target:
                n_correct += 1
#             else:
#                 print('%-20s, gt: %-20s' % (pred, target))

    raw_preds = converter.decode(preds.data, preds_size.data, raw=True)[:params.n_test_disp]
    for raw_pred, pred, gt in zip(raw_preds, sim_preds, list_1):
        print('%-20s => %-20s, gt: %-20s' % (raw_pred, pred, gt))

    print(n_correct)
    print(max_iter * params.batchSize)
    accuracy = n_correct / float(max_iter * params.batchSize)
    print('Test loss: %f, accuray: %f' % (loss_avg.val(), accuracy)) 
开发者ID:hwwu,项目名称:ctpn-crnn,代码行数:61,代码来源:crnn_main.py

示例8: val

# 需要导入模块: from models import crnn [as 别名]
# 或者: from models.crnn import parameters [as 别名]
def val(net, dataset, max_iter=100):
    print('Start val')

    for p in crnn.parameters():
        p.requires_grad = False

    net.eval()
    data_loader = torch.utils.data.DataLoader(
        dataset, shuffle=True, batch_size=opt.batchSize, num_workers=int(opt.workers))
    val_iter = iter(data_loader)

    i = 0
    n_correct = 0
    # loss averager
    avg_h_val = utils.averager()
    avg_cost_val = utils.averager()
    avg_h_cost_val = utils.averager()

    if opt.eval_all:
        max_iter = len(data_loader)
    else:
        max_iter = min(max_iter, len(data_loader))

    for i in range(max_iter):
        data = val_iter.next()
        i += 1
        cpu_images, cpu_texts = data
        batch_size = cpu_images.size(0)
        utils.loadData(image, cpu_images)
        t, l = converter.encode(cpu_texts)
        utils.loadData(text, t)
        utils.loadData(length, l)

        preds = crnn(image)
        preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))
        H, cost = seg_ctc_ent_cost(preds, text, preds_size, length, uni_rate=opt.uni_rate)
        h_cost = (1-opt.h_rate)*cost-opt.h_rate*H
        avg_h_val.add(H / batch_size)
        avg_cost_val.add(cost / batch_size)
        avg_h_cost_val.add(h_cost / batch_size)

        _, preds = preds.max(2)
        preds = preds.transpose(1, 0).contiguous().view(-1)
        sim_preds = converter.decode(preds.data, preds_size.data, raw=False)
        for idx, (pred, target) in enumerate(zip(sim_preds, cpu_texts)):
            if pred == target.lower():
                n_correct += 1

    raw_preds = converter.decode(preds.data, preds_size.data, raw=True)[:opt.n_test_disp]
    for raw_pred, pred, gt in zip(raw_preds, sim_preds, cpu_texts):
        print('%-20s => %-20s, gt: %-20s' % (raw_pred, pred, gt))

    accuracy = n_correct / float(max_iter * opt.batchSize)
    print('Test H: %f, Cost: %f, H Cost: %f, accuray: %f' %
            (avg_h_val.val(), avg_cost_val.val(), avg_h_cost_val.val(), accuracy)) 
开发者ID:liuhu-bigeye,项目名称:enctc.crnn,代码行数:57,代码来源:crnn_main_seg.py


注:本文中的models.crnn.parameters方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。