本文整理汇总了Python中models.crnn.parameters方法的典型用法代码示例。如果您正苦于以下问题:Python crnn.parameters方法的具体用法?Python crnn.parameters怎么用?Python crnn.parameters使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类models.crnn
的用法示例。
在下文中一共展示了crnn.parameters方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: training
# 需要导入模块: from models import crnn [as 别名]
# 或者: from models.crnn import parameters [as 别名]
def training(start):
for total_steps in range(start, params.niter):
train_iter = iter(train_loader)
i = 0
print(len(train_loader))
while i < len(train_loader):
for p in crnn.parameters():
p.requires_grad = True
crnn.train()
cost = trainBatch(crnn, criterion, optimizer, train_iter)
loss_avg.add(cost)
i += 1
if i % params.displayInterval == 0:
print('[%d/%d][%d/%d] Loss: %f' %
(total_steps, params.niter, i, len(train_loader), loss_avg.val()))
loss_avg.reset()
if i % params.valInterval == 0:
val(crnn, test_dataset, criterion)
if (total_steps + 1) % params.saveInterval == 0:
# if i % params.valInterval == 0:
print('save model ..........')
ti = time.strftime('%Y-%m-%d', time.localtime(time.time()))
torch.save(crnn.state_dict(),
'{0}/crnn_Rec_done_{1}_{2}.pth'.format(params.experiment, total_steps, ti))
print('save model done')
示例2: trainBatch
# 需要导入模块: from models import crnn [as 别名]
# 或者: from models.crnn import parameters [as 别名]
def trainBatch(net, optimizer):
data = train_iter.next()
cpu_images, cpu_texts = data
batch_size = cpu_images.size(0)
utils.loadData(image, cpu_images)
t, l = converter.encode(cpu_texts)
utils.loadData(text, t)
utils.loadData(length, l)
preds = crnn(image)
preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))
H, cost = seg_ctc_ent_cost(preds, text, preds_size, length, uni_rate=opt.uni_rate)
h_cost = (1-opt.h_rate)*cost-opt.h_rate*H
cost_sum = h_cost.data.sum()
inf = float("inf")
if cost_sum == inf or cost_sum == -inf or cost_sum > 200*batch_size:
print("Warning: received an inf loss, setting loss value to 0")
return torch.zeros(H.size()), torch.zeros(cost.size()), torch.zeros(h_cost.size())
crnn.zero_grad()
h_cost.backward()
torch.nn.utils.clip_grad_norm(crnn.parameters(), opt.max_norm)
optimizer.step()
return H / batch_size, cost / batch_size, h_cost / batch_size
示例3: val
# 需要导入模块: from models import crnn [as 别名]
# 或者: from models.crnn import parameters [as 别名]
def val(net, dataset, criterion, max_iter=100):
print('Start val')
for p in crnn.parameters():
p.requires_grad = False
net.eval()
data_loader = torch.utils.data.DataLoader(
dataset, shuffle=True, batch_size=opt.batchSize, num_workers=int(opt.workers))
val_iter = iter(data_loader)
i = 0
n_correct = 0
loss_avg = utils.averager()
max_iter = min(max_iter, len(data_loader))
for i in range(max_iter):
data = val_iter.next()
i += 1
cpu_images, cpu_texts = data
batch_size = cpu_images.size(0)
utils.loadData(image, cpu_images)
t, l = converter.encode(cpu_texts)
utils.loadData(text, t)
utils.loadData(length, l)
preds = crnn(image) # size = 26, 64, 96
# print(preds.size())
preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))
cost = criterion(preds, text, preds_size, length) / batch_size
loss_avg.add(cost)
_, preds = preds.max(2) # size = 26, 64
# print(preds.size())
# preds = preds.squeeze(2)
preds = preds.transpose(1, 0).contiguous().view(-1)
sim_preds = converter.decode(preds.data, preds_size.data, raw=False)
for pred, target in zip(sim_preds, cpu_texts):
if pred == target.lower():
n_correct += 1
raw_preds = converter.decode(preds.data, preds_size.data, raw=True)[:opt.n_test_disp]
for raw_pred, pred, gt in zip(raw_preds, sim_preds, cpu_texts):
print('%-30s => %-30s, gt: %-30s' % (raw_pred, pred, gt))
accuracy = n_correct / float(max_iter * opt.batchSize)
print('Test loss: %f, accuray: %f' % (loss_avg.val(), accuracy))
示例4: val
# 需要导入模块: from models import crnn [as 别名]
# 或者: from models.crnn import parameters [as 别名]
def val(net, dataset, criterion, max_iter=100):
#print('Start val')
for p in crnn.parameters():
p.requires_grad = False
net.eval()
data_loader = torch.utils.data.DataLoader(dataset, shuffle=True, batch_size=params.batchSize, num_workers=int(params.workers))
val_iter = iter(data_loader)
i = 0
n_correct = 0
loss_avg = utils.averager()
max_iter = min(max_iter, len(data_loader))
for i in range(max_iter):
data = val_iter.next()
i += 1
cpu_images, cpu_texts = data
batch_size = cpu_images.size(0)
utils.loadData(image, cpu_images)
t, l = converter.encode(cpu_texts)
utils.loadData(text, t)
utils.loadData(length, l)
preds = crnn(image)
preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))
cost = criterion(preds, text, preds_size, length)
loss_avg.add(cost)
_, preds = preds.max(2)
preds = preds.transpose(1, 0).contiguous().view(-1)
sim_preds = converter.decode(preds.data, preds_size.data, raw=False)
#cpu_texts_decode = []
#for i in cpu_texts:
# cpu_texts_decode.append(i.decode('utf-8', 'strict'))
for pred, target in zip(sim_preds, cpu_texts):
if pred == target:
n_correct += 1
raw_preds = converter.decode(preds.data, preds_size.data, raw=True)[:params.n_test_disp]
for raw_pred, pred, gt in zip(raw_preds, sim_preds, cpu_texts):
print('%-20s => %-20s, gt: %-20s' % (raw_pred, pred, gt))
accuracy = n_correct / float(max_iter * params.batchSize)
print('loss: %f, accuray: %f' % (loss_avg.val(), accuracy))
return loss_avg.val(), accuracy
示例5: val
# 需要导入模块: from models import crnn [as 别名]
# 或者: from models.crnn import parameters [as 别名]
def val(net, dataset, criterion, max_iter=100):
print('Start val')
for p in crnn.parameters():
p.requires_grad = False
net.eval()
data_loader = torch.utils.data.DataLoader(
dataset, shuffle=True, batch_size=opt.batchSize, num_workers=int(opt.workers))
val_iter = iter(data_loader)
i = 0
n_correct = 0
loss_avg = utils.averager()
max_iter = min(max_iter, len(data_loader))
for i in range(max_iter):
data = val_iter.next()
i += 1
cpu_images, cpu_texts = data
batch_size = cpu_images.size(0)
utils.loadData(image, cpu_images)
t, l = converter.encode(cpu_texts)
utils.loadData(text, t)
utils.loadData(length, l)
preds = crnn(image)
preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))
cost = criterion(preds, text, preds_size, length) / batch_size
loss_avg.add(cost)
_, preds = preds.max(2)
preds = preds.squeeze(2)
preds = preds.transpose(1, 0).contiguous().view(-1)
sim_preds = converter.decode(preds.data, preds_size.data, raw=False)
for pred, target in zip(sim_preds, cpu_texts):
if pred == target.lower():
n_correct += 1
raw_preds = converter.decode(preds.data, preds_size.data, raw=True)[:opt.n_test_disp]
for raw_pred, pred, gt in zip(raw_preds, sim_preds, cpu_texts):
print('%-20s => %-20s, gt: %-20s' % (raw_pred, pred, gt))
accuracy = n_correct / float(max_iter * opt.batchSize)
print('Test loss: %f, accuray: %f' % (loss_avg.val(), accuracy))
示例6: val
# 需要导入模块: from models import crnn [as 别名]
# 或者: from models.crnn import parameters [as 别名]
def val(net, dataset, criterion, max_iter=100):
print('Start val')
for p in crnn.parameters():
p.requires_grad = False
net.eval()
data_loader = torch.utils.data.DataLoader(
dataset, shuffle=True, batch_size=opt.batchSize, num_workers=int(opt.workers))
val_iter = iter(data_loader)
i = 0
n_correct = 0
loss_avg = utils.averager()
max_iter = min(max_iter, len(data_loader))
for i in range(max_iter):
data = val_iter.next()
i += 1
cpu_images, cpu_texts = data
batch_size = cpu_images.size(0)
utils.loadData(image, cpu_images)
t, l = converter.encode(cpu_texts)
utils.loadData(text, t)
utils.loadData(length, l)
preds = crnn(image)
preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))
cost = criterion(preds, text, preds_size, length) / batch_size
loss_avg.add(cost)
_, preds = preds.max(2)
preds = preds.squeeze(2)
preds = preds.transpose(1, 0).contiguous().view(-1)
sim_preds = converter.decode(preds.data, preds_size.data, raw=False)
for pred, target in zip(sim_preds, cpu_texts):
if pred == target:
n_correct += 1
raw_preds = converter.decode(preds.data, preds_size.data, raw=True)[:opt.n_test_disp]
for raw_pred, pred, gt in zip(raw_preds, sim_preds, cpu_texts):
print('%-20s => %-20s, gt: %-20s' % (raw_pred.encode('utf-8'), pred.encode('utf-8'), gt.encode('utf-8')))
accuracy = n_correct / float(max_iter * opt.batchSize)
print('Test loss: %f, accuray: %f' % (loss_avg.val(), accuracy))
示例7: val
# 需要导入模块: from models import crnn [as 别名]
# 或者: from models.crnn import parameters [as 别名]
def val(net, dataset, criterion, max_iter=100):
print('Start val')
for p in crnn.parameters():
p.requires_grad = False
net.eval()
data_loader = torch.utils.data.DataLoader(
dataset, shuffle=True, batch_size=params.batchSize, num_workers=int(params.workers))
val_iter = iter(data_loader)
i = 0
n_correct = 0
loss_avg = utils.averager()
max_iter = min(max_iter, len(data_loader))
for i in range(max_iter):
data = val_iter.next()
i += 1
cpu_images, cpu_texts = data
batch_size = cpu_images.size(0)
utils.loadData(image, cpu_images)
t, l = converter.encode(cpu_texts)
utils.loadData(text, t)
utils.loadData(length, l)
preds = crnn(image)
# print('-----preds-----')
# print(preds)
preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))
# print('-----preds_size-----')
# print(preds_size)
cost = criterion(preds, text, preds_size, length) / batch_size
loss_avg.add(cost)
_, preds = preds.max(2)
# print('-----preds.max(2)-----')
# print(preds)
preds = preds.transpose(1, 0).contiguous().view(-1)
# print('-----preds.transpose(1, 0)-----')
# print(preds)
sim_preds = converter.decode(preds.data, preds_size.data, raw=False)
list_1 = []
for m in cpu_texts:
list_1.append(m.decode('utf-8', 'strict'))
# if (i - 1) % 10 == 0:
# print('-----sim_preds-----list_1-----')
# print(sim_preds, list_1)
for pred, target in zip(sim_preds, list_1):
if pred == target:
n_correct += 1
# else:
# print('%-20s, gt: %-20s' % (pred, target))
raw_preds = converter.decode(preds.data, preds_size.data, raw=True)[:params.n_test_disp]
for raw_pred, pred, gt in zip(raw_preds, sim_preds, list_1):
print('%-20s => %-20s, gt: %-20s' % (raw_pred, pred, gt))
print(n_correct)
print(max_iter * params.batchSize)
accuracy = n_correct / float(max_iter * params.batchSize)
print('Test loss: %f, accuray: %f' % (loss_avg.val(), accuracy))
示例8: val
# 需要导入模块: from models import crnn [as 别名]
# 或者: from models.crnn import parameters [as 别名]
def val(net, dataset, max_iter=100):
print('Start val')
for p in crnn.parameters():
p.requires_grad = False
net.eval()
data_loader = torch.utils.data.DataLoader(
dataset, shuffle=True, batch_size=opt.batchSize, num_workers=int(opt.workers))
val_iter = iter(data_loader)
i = 0
n_correct = 0
# loss averager
avg_h_val = utils.averager()
avg_cost_val = utils.averager()
avg_h_cost_val = utils.averager()
if opt.eval_all:
max_iter = len(data_loader)
else:
max_iter = min(max_iter, len(data_loader))
for i in range(max_iter):
data = val_iter.next()
i += 1
cpu_images, cpu_texts = data
batch_size = cpu_images.size(0)
utils.loadData(image, cpu_images)
t, l = converter.encode(cpu_texts)
utils.loadData(text, t)
utils.loadData(length, l)
preds = crnn(image)
preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))
H, cost = seg_ctc_ent_cost(preds, text, preds_size, length, uni_rate=opt.uni_rate)
h_cost = (1-opt.h_rate)*cost-opt.h_rate*H
avg_h_val.add(H / batch_size)
avg_cost_val.add(cost / batch_size)
avg_h_cost_val.add(h_cost / batch_size)
_, preds = preds.max(2)
preds = preds.transpose(1, 0).contiguous().view(-1)
sim_preds = converter.decode(preds.data, preds_size.data, raw=False)
for idx, (pred, target) in enumerate(zip(sim_preds, cpu_texts)):
if pred == target.lower():
n_correct += 1
raw_preds = converter.decode(preds.data, preds_size.data, raw=True)[:opt.n_test_disp]
for raw_pred, pred, gt in zip(raw_preds, sim_preds, cpu_texts):
print('%-20s => %-20s, gt: %-20s' % (raw_pred, pred, gt))
accuracy = n_correct / float(max_iter * opt.batchSize)
print('Test H: %f, Cost: %f, H Cost: %f, accuray: %f' %
(avg_h_val.val(), avg_cost_val.val(), avg_h_cost_val.val(), accuracy))