当前位置: 首页>>代码示例>>Python>>正文


Python models.__dict__方法代码示例

本文整理汇总了Python中models.__dict__方法的典型用法代码示例。如果您正苦于以下问题:Python models.__dict__方法的具体用法?Python models.__dict__怎么用?Python models.__dict__使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在models的用法示例。


在下文中一共展示了models.__dict__方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: import models [as 别名]
# 或者: from models import __dict__ [as 别名]
def main():
    exp_dir = os.path.dirname(args.config)
    
    with open(args.config) as f:
        if version.parse(yaml.version >= "5.1"):
            config = yaml.load(f, Loader=yaml.FullLoader)
        else:
            config = yaml.load(f)

    for k, v in config.items():
        setattr(args, k, v)
    
    model = models.modules.__dict__[args.model['module']['arch']](args.model['module'])
    model = torch.nn.DataParallel(model)
    
    ckpt_path = exp_dir + '/checkpoints/ckpt_iter_{}.pth.tar'.format(args.iter)
    save_path = exp_dir + '/checkpoints/convert_iter_{}.pth.tar'.format(args.iter)
    ckpt = torch.load(ckpt_path)
    weight = ckpt['state_dict']
    model.load_state_dict(weight, strict=True)
    model = model.module.image_encoder
    
    torch.save(model.state_dict(), save_path) 
开发者ID:XiaohangZhan,项目名称:conditional-motion-propagation,代码行数:25,代码来源:weight_process.py

示例2: create_model

# 需要导入模块: import models [as 别名]
# 或者: from models import __dict__ [as 别名]
def create_model(model_type,model_name,out_dim):
        # Create Similarity Prediction Network (SPN) by model surgery
        model = models.__dict__[model_type].__dict__[model_name](out_dim=out_dim)
        n_feat = model.last.in_features

        # Replace task-dependent module
        model.last = nn.Sequential(
            nn.Linear(n_feat*2, n_feat*4),
            nn.BatchNorm1d(n_feat*4),
            nn.ReLU(inplace=True),
            nn.Linear(n_feat*4, 2)
        )

        # Replace task-dependent function
        def new_logits(self, x):
            feat1, feat2 = PairEnum(x)
            featcat = torch.cat([feat1, feat2], 1)
            out = self.last(featcat)
            return out
        model.logits = MethodType(new_logits, model)

        return model 
开发者ID:GT-RIPL,项目名称:L2C,代码行数:24,代码来源:similarity.py

示例3: get_model

# 需要导入模块: import models [as 别名]
# 或者: from models import __dict__ [as 别名]
def get_model(args):
    if args.first_layer_dense:
        args.first_layer_type = "DenseConv"

    print("=> Creating model '{}'".format(args.arch))
    model = models.__dict__[args.arch]()

    # applying sparsity to the network
    if (
        args.conv_type != "DenseConv"
        and args.conv_type != "SampleSubnetConv"
        and args.conv_type != "ContinuousSparseConv"
    ):
        if args.prune_rate < 0:
            raise ValueError("Need to set a positive prune rate")

        set_model_prune_rate(model, prune_rate=args.prune_rate)
        print(
            f"=> Rough estimate model params {sum(int(p.numel() * (1-args.prune_rate)) for n, p in model.named_parameters() if not n.endswith('scores'))}"
        )

    # freezing the weights if we are only doing subnet training
    if args.freeze_weights:
        freeze_model_weights(model)

    return model 
开发者ID:allenai,项目名称:hidden-networks,代码行数:28,代码来源:main.py

示例4: _get_optimizer

# 需要导入模块: import models [as 别名]
# 或者: from models import __dict__ [as 别名]
def _get_optimizer(optimizer_name, model, **kwargs):
    """
    This function serves as interface between the command line and the optimizer.
    In fact each optimizer has a different set of parameters and in this way one can just change the optimizer
    in his experiments just by changing the parameters passed to the entry point.

    Parameters
    ----------
    optimizer_name:
        Name of the optimizers. See: torch.optim for a list of possible values
    model:
        The model with which the training will be done
    kwargs:
        List of all arguments to be used to init the optimizer
    Returns
    -------
    torch.optim
        The optimizer initialized with the provided parameters
    """
    # Verify the optimizer exists
    assert optimizer_name in torch.optim.__dict__

    params = {}
    # For all arguments declared in the constructor signature of the selected optimizer
    for p in inspect.getfullargspec(torch.optim.__dict__[optimizer_name].__init__).args:
        # Add it to a dictionary in case it exists a corresponding value in kwargs
        if p in kwargs:
            params.update({p: kwargs[p]})
    # Create an return the optimizer with the correct list of parameters
    return torch.optim.__dict__[optimizer_name](model.parameters(), **params) 
开发者ID:DIVA-DIA,项目名称:DeepDIVA,代码行数:32,代码来源:setup.py

示例5: _get_criterion

# 需要导入模块: import models [as 别名]
# 或者: from models import __dict__ [as 别名]
def _get_criterion(criterion_name, disable_databalancing, dataset_folder, inmem, workers, **kwargs):
    """
    This function serves as an interface between the command line and the criterion.

    Parameters
    ----------
     criterion_name : string
        Name of the criterion
    disable_databalancing : boolean
        If True the criterion will not be fed with the class frequencies. Use with care.
    dataset_folder : String
        Location of the dataset on the file system
    inmem : boolean
        Load the whole dataset in memory. If False, only file names are stored and images are loaded
        on demand. This is slower than storing everything in memory.
    workers : int
        Number of workers to use for the dataloaders

    Returns
    -------
    torch.nn
        The initalized criterion

    """
    # Verify that the criterion exists
    assert criterion_name in torch.nn.__dict__

    # Instantiate the criterion
    criterion = torch.nn.__dict__[criterion_name]()

    if not disable_databalancing:
        try:
            logging.info('Loading weights for data balancing')
            weights = _load_class_frequencies_weights_from_file(dataset_folder, inmem, workers, **kwargs)
            criterion.weight = torch.from_numpy(weights).type(torch.FloatTensor)
        except:
            logging.warning('Unable to load information for data balancing. Using normal criterion')
    return criterion 
开发者ID:DIVA-DIA,项目名称:DeepDIVA,代码行数:40,代码来源:setup.py

示例6: _optimizer_options

# 需要导入模块: import models [as 别名]
# 或者: from models import __dict__ [as 别名]
def _optimizer_options(parser):
    """
    Options specific for optimizers
    """
    # List of possible optimizers already implemented in PyTorch
    optimizer_options = [name for name in torch.optim.__dict__ if callable(torch.optim.__dict__[name])]

    parser_optimizer = parser.add_argument_group('OPTIMIZER', 'Optimizer Options')

    parser_optimizer.add_argument('--optimizer-name',
                                  choices=optimizer_options,
                                  default='SGD',
                                  help='optimizer to be used for training')
    parser_optimizer.add_argument('--lr',
                                  type=float,
                                  default=0.001,
                                  help='learning rate to be used for training')
    parser_optimizer.add_argument('--decay-lr',
                                  type=int,
                                  default=None,
                                  help='drop LR by 10 every N epochs')
    parser_optimizer.add_argument('--momentum',
                                  type=float,
                                  default=0,
                                  help='momentum (parameter for the optimizer)')
    parser_optimizer.add_argument('--dampening',
                                  type=float,
                                  default=0,
                                  help='dampening (parameter for the SGD)')
    parser_optimizer.add_argument('--weight-decay',
                                  type=float,
                                  default=0,
                                  help='weight_decay coefficient, also known as L2 regularization') 
开发者ID:DIVA-DIA,项目名称:DeepDIVA,代码行数:35,代码来源:CL_arguments.py

示例7: load_snapshot

# 需要导入模块: import models [as 别名]
# 或者: from models import __dict__ [as 别名]
def load_snapshot(snapshot_file):
    """Load a training snapshot"""
    print("--- Loading model from snapshot")

    # Create network
    norm_act = partial(InPlaceABN, activation="leaky_relu", activation_param=.01)
    body = models.__dict__["net_wider_resnet38_a2"](norm_act=norm_act, dilation=(1, 2, 4, 4))
    head = DeeplabV3(4096, 256, 256, norm_act=norm_act, pooling_size=(84, 84))

    # Load snapshot and recover network state
    data = torch.load(snapshot_file)
    body.load_state_dict(data["state_dict"]["body"])
    head.load_state_dict(data["state_dict"]["head"])

    return body, head, data["state_dict"]["cls"] 
开发者ID:mapillary,项目名称:inplace_abn,代码行数:17,代码来源:test_vistas_single_gpu.py

示例8: __init__

# 需要导入模块: import models [as 别名]
# 或者: from models import __dict__ [as 别名]
def __init__(self, model_path, device=None, benchmark: bool=True):
        '''
        Args:
            module_path: path to pre-trained model (available to download, see README)
            device: CUDA device to use. str or torch.device instance
                warning: this is restricted to 'cpu' or 'cuda' only
                    ('cuda:1' won't work due to main package arcitecture)
                default is choose 'cuda' if available
            benchmark: to enable cudnn benchmark mode or not
        '''
        self.model_path = model_path
        if device is None:
            device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.device = device

        if benchmark:
            torch.backends.cudnn.enabled = True
            torch.backends.cudnn.benchmark = True

        snapshot = torch.load(self.model_path, map_location=self.device)
        self.param = snapshot['args']

        self.transform  = transforms.Compose([
            transforms.PreCrop(self.param.pre_crop_expand),
            transforms.TrainScale2WH((self.param.crop_width, self.param.crop_height)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
        ])

        self.net = models.__dict__[self.param.arch](self.param.modelconfig, None)
        self.net.train(False).to(self.device)

        weights = models.remove_module_dict(snapshot['state_dict'])
        self.net.load_state_dict(weights) 
开发者ID:D-X-Y,项目名称:landmark-detection,代码行数:36,代码来源:san_api.py

示例9: main

# 需要导入模块: import models [as 别名]
# 或者: from models import __dict__ [as 别名]
def main():
    args.distributed = args.world_size > 1
    args.gpu = 0
    if args.distributed:
        args.gpu = args.rank % torch.cuda.device_count()
        torch.cuda.set_device(args.gpu)
        dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size)

    if args.fp16: assert torch.backends.cudnn.enabled, "fp16 mode requires cudnn backend to be enabled."

    model = models.__dict__[args.arch]().cuda()
    if args.distributed: model = DDP(model)

    data, train_sampler = torch_loader(f'{args.data}-sz/160', 128, 256)
    learner = Learner.from_model_data(model, data)
    learner.crit = F.cross_entropy
    learner.metrics = [accuracy, top5]
    if args.fp16: learner.half()
    wd=2e-5
    update_model_dir(learner, args.save_dir)
    fit(learner, '1', 0.03, 1, train_sampler, wd)

    data, train_sampler = torch_loader(f'{args.data}-sz/320', 128, 256)
    learner.set_data(data)
    fit(learner, '3', 1e-1, 1, train_sampler, wd)

    data, train_sampler = torch_loader(args.data, 128, 256)
    learner.set_data(data)
    fit(learner, '3', 1e-1, 1, train_sampler, wd)
    print('Finished!') 
开发者ID:fastai,项目名称:imagenet-fast,代码行数:32,代码来源:jh_warm.py

示例10: create_model

# 需要导入模块: import models [as 别名]
# 或者: from models import __dict__ [as 别名]
def create_model(model_type,model_name,out_dim):
        # This function create the model for specific learner
        # The create_model(), forward_with_criterion(), and learn() are task-dependent
        # Do surgery to generic model if necessary
        model = models.__dict__[model_type].__dict__[model_name](out_dim=out_dim)
        #n_feat = model.last.in_features  # This information is useful
        return model 
开发者ID:GT-RIPL,项目名称:L2C,代码行数:9,代码来源:classification.py

示例11: create_model

# 需要导入模块: import models [as 别名]
# 或者: from models import __dict__ [as 别名]
def create_model(model_type,model_name,out_dim):
        # Prepare Constrained Clustering Network (CCN)
        model = models.__dict__[model_type].__dict__[model_name](out_dim=out_dim)
        return model 
开发者ID:GT-RIPL,项目名称:L2C,代码行数:6,代码来源:clustering.py

示例12: build_model

# 需要导入模块: import models [as 别名]
# 或者: from models import __dict__ [as 别名]
def build_model():

    model_name = args.modality + "_" + args.arch
    model = models.__dict__[model_name](pretrained=True, num_classes=101)
    if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
        model.features = torch.nn.DataParallel(model.features)
        model.cuda()
    else:
        model = torch.nn.DataParallel(model).cuda()
    return model 
开发者ID:bryanyzhu,项目名称:two-stream-pytorch,代码行数:12,代码来源:main.py

示例13: build_model

# 需要导入模块: import models [as 别名]
# 或者: from models import __dict__ [as 别名]
def build_model():

    model = models.__dict__[args.arch](pretrained=True, num_classes=101)
    model.cuda()
    return model 
开发者ID:bryanyzhu,项目名称:two-stream-pytorch,代码行数:7,代码来源:main_single_gpu.py

示例14: main

# 需要导入模块: import models [as 别名]
# 或者: from models import __dict__ [as 别名]
def main():
    parser = argparse.ArgumentParser(description='Compute Model FLOPs and PN')
    parser.add_argument('--arch', default='resnet50', type=str)
    parser.add_argument('--feature_dim', default=256, type=int)
    parser.add_argument('--input_size', default=112, type=int)
    parser.add_argument('--batch_size', default=1, type=int)
    args = parser.parse_args()

    model = models.__dict__[args.arch](feature_dim=args.feature_dim)
    flops, n_conv, n_linear = compute_flops(model, args.input_size,
                                            args.batch_size)
    bits = compute_param_number(model)

    print('[{} ({} conv, {} linear)] FLOPs: {:.2f} G, PN: {:.2f} M'.format(
        args.arch, n_conv, n_linear, flops, bits)) 
开发者ID:yl-1993,项目名称:hfsoftmax,代码行数:17,代码来源:compute_model_stats.py

示例15: init_optimizer

# 需要导入模块: import models [as 别名]
# 或者: from models import __dict__ [as 别名]
def init_optimizer(self):
        optimizer_arg = {'params':self.model.parameters(),
                         'lr':self.config['lr'],
                         'weight_decay':self.config['weight_decay']}
        if self.config['optimizer'] in ['SGD','RMSprop']:
            optimizer_arg['momentum'] = self.config['momentum']
        elif self.config['optimizer'] in ['Rprop']:
            optimizer_arg.pop('weight_decay')
        elif self.config['optimizer'] == 'amsgrad':
            optimizer_arg['amsgrad'] = True
            self.config['optimizer'] = 'Adam'

        self.optimizer = torch.optim.__dict__[self.config['optimizer']](**optimizer_arg)
        self.scheduler = torch.optim.lr_scheduler.MultiStepLR(self.optimizer, milestones=self.config['schedule'],
                                                              gamma=0.1) 
开发者ID:GT-RIPL,项目名称:Continual-Learning-Benchmark,代码行数:17,代码来源:default.py


注:本文中的models.__dict__方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。