本文整理汇总了Python中models.Model方法的典型用法代码示例。如果您正苦于以下问题:Python models.Model方法的具体用法?Python models.Model怎么用?Python models.Model使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类models
的用法示例。
在下文中一共展示了models.Model方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: visualize
# 需要导入模块: import models [as 别名]
# 或者: from models import Model [as 别名]
def visualize(args):
saved_path = constant.EXP_ROOT
model = models.Model(args, constant.ANSWER_NUM_DICT[args.goal])
model.cuda()
model.eval()
model.load_state_dict(torch.load(saved_path + '/' + args.model_id + '_best.pt')["state_dict"])
label2id = constant.ANS2ID_DICT["open"]
visualize = SummaryWriter("../visualize/" + args.model_id)
# label_list = ["person", "leader", "president", "politician", "organization", "company", "athlete","adult", "male", "man", "television_program", "event"]
label_list = list(label2id.keys())
ids = [label2id[_] for _ in label_list]
if args.gcn:
# connection_matrix = model.decoder.label_matrix + model.decoder.weight * model.decoder.affinity
connection_matrix = model.decoder.label_matrix + model.decoder.weight * model.decoder.affinity
label_vectors = model.decoder.transform(connection_matrix.mm(model.decoder.linear.weight) / connection_matrix.sum(1, keepdim=True))
else:
label_vectors = model.decoder.linear.weight.data
interested_vectors = torch.index_select(label_vectors, 0, torch.tensor(ids).to(torch.device("cuda")))
visualize.add_embedding(interested_vectors, metadata=label_list, label_img=None)
示例2: train
# 需要导入模块: import models [as 别名]
# 或者: from models import Model [as 别名]
def train(args):
""" The main function for doing one iteration training on a input.
Args:
args: a Namespace object with the required parameters
obtained from the function process_args()
"""
arg_string = pprint.pformat(vars(args))
logger.info("Arguments for the experiment\n{0}".format(arg_string))
if args.random_seed != 0:
np.random.seed(args.random_seed)
minibatch_count = args.minibatch_count
minibatch_size = args.minibatch_size
feature_dim = args.feature_dim
if args.tar_file == '':
utt_to_chunks, minibatch_info = process_range_file(args.ranges_file, minibatch_count, minibatch_size)
if args.sequential_loading:
train_data, train_labels = load_ranges_info(utt_to_chunks, minibatch_info, minibatch_size, args.scp_file,
feature_dim)
else:
train_data, train_labels = load_ranges_data(utt_to_chunks, minibatch_info, minibatch_size, args.scp_file,
feature_dim)
if args.shuffle:
shuffle_indices = np.random.permutation(np.arange(minibatch_count))
train_data = train_data[shuffle_indices]
train_labels = train_labels[shuffle_indices]
data_loader = DataLoader(train_data, train_labels, args.sequential_loading, queue_size=16)
else:
data_loader = TarFileDataLoader(args.tar_file, logger=None, queue_size=16)
if 'ModelWithoutDropoutReluAdversarial' in args.input_dir:
model = models.ModelWithoutDropoutReluAdversarial()
model.train_one_iteration(data_loader, args, logger)
else:
model = models.Model()
model.train_one_iteration(data_loader, args, logger)
示例3: run
# 需要导入模块: import models [as 别名]
# 或者: from models import Model [as 别名]
def run():
# arguments
parser = argparse.ArgumentParser()
parser.add_argument('-eid', '--experiment_id', type=str)
parser.add_argument('-d', '--model_directory', type=str, default=MODEL_DIRECTORY)
parser.add_argument('-dd', '--dataset_directory', type=str, default=DATASET_DIRECTORY)
parser.add_argument('-cls', '--class_ids', type=str, default=CLASS_IDS_ALL)
parser.add_argument('-s', '--seed', type=int, default=RANDOM_SEED)
parser.add_argument('-g', '--gpu', type=int, default=GPU)
args = parser.parse_args()
directory_output = os.path.join(args.model_directory, args.experiment_id)
# set random seed, gpu
random.seed(args.seed)
np.random.seed(args.seed)
cp.random.seed(args.seed)
chainer.cuda.get_device(args.gpu).use()
# load dataset
dataset_test = datasets.ShapeNet(args.dataset_directory, args.class_ids.split(','), 'test')
# setup model & optimizer
model = models.Model()
model.to_gpu()
chainer.serializers.load_npz(os.path.join(directory_output, 'model.npz'), model)
# evaluate
reporter = chainer.Reporter()
observation = {}
with reporter.scope(observation):
training.validation(None, model, dataset_test)
for key in sorted(observation.keys()):
key_display = key
for class_id in CLASS_NAMES.keys():
key_display = key_display.replace(class_id, CLASS_NAMES[class_id])
print '%s: %.4f' % (key_display, observation[key])
示例4: eval_dnn
# 需要导入模块: import models [as 别名]
# 或者: from models import Model [as 别名]
def eval_dnn(args):
""" The main function for doing evaluation on a trained network.
Args:
args: a Namespace object with the required parameters
obtained from the function process_args()
"""
model_dir = args.model_dir
use_gpu = args.use_gpu == 'yes'
min_chunk_size = args.min_chunk_size
chunk_size = args.chunk_size
# First change the output files temp ones and at the end rename them
wspecifier, ark, scp = process_wspecifier(args.vector_wspecifier)
if ark is not None and os.path.exists(ark) and scp is not None and os.path.exists(scp):
logger.info('Both output ark and scp files exist. Return from this call.')
return
model = Model()
with kaldi_io.open_or_fd(args.feature_rspecifier) as input_fid:
with kaldi_io.open_or_fd(wspecifier) as output_fid:
model.make_embedding(input_fid, output_fid, model_dir, min_chunk_size, chunk_size, use_gpu, logger)
# rename output files
if ark is not None:
os.rename(ark + '.tmp.ark', ark)
# first load scp and correct them to point to renamed ark file.
if scp is not None:
with open(scp + '.tmp.scp', 'rt') as fid_in:
with open(scp + '.tmp', 'wr') as fid_out:
text = fid_in.read()
text = text.replace('ark.tmp.ark', 'ark')
# Sometimes there is no \n at the end of file ank cause a Kaldi error.
# For preventing this error juts check the last char and append \n if not exist
if text[-1] != '\n':
text += '\n'
fid_out.write(text)
os.rename(scp + '.tmp', scp)
# after create scp file now we can delete temp file
# os.remove(scp + '.tmp.scp')
示例5: eval_dnn
# 需要导入模块: import models [as 别名]
# 或者: from models import Model [as 别名]
def eval_dnn(args):
""" The main function for doing evaluation on a trained network.
Args:
args: a Namespace object with the required parameters
obtained from the function process_args()
"""
input_dir = args.input_dir
use_gpu = args.use_gpu == 'yes'
data_loader = TarFileDataLoader(args.tar_file, logger=None, queue_size=16)
model = Model()
model.eval(data_loader, input_dir, use_gpu, logger)
示例6: _test
# 需要导入模块: import models [as 别名]
# 或者: from models import Model [as 别名]
def _test(args):
assert args.load
test_fname = args.eval_data
model = models.Model(args, constant.ANSWER_NUM_DICT[args.goal])
model.cuda()
model.eval()
# load_model(args.reload_model_name, constant.EXP_ROOT, args.model_id, model)
if args.goal == "onto":
saved_path = constant.EXP_ROOT_ONTO
else:
saved_path = constant.EXP_ROOT
model.load_state_dict(torch.load(saved_path + '/' + args.model_id + '_best.pt')["state_dict"])
data_gens = get_datasets([(test_fname, 'test', args.goal)], args, eval_epoch=1)
for name, dataset in [(test_fname, data_gens[0])]:
print('Processing... ' + name)
batch = next(dataset)
eval_batch, _ = to_torch(batch)
loss, output_logits = model(eval_batch, args.goal)
threshes = np.arange(0,1,0.02)
# threshes = [0.65, 0.68, 0.7, 0.71]
# threshes = [0.5]
p_and_r = []
for thresh in tqdm(threshes):
total_gold_pred = []
total_probs = []
total_ys = []
print('\nthresh {}'.format(thresh))
output_index = get_output_index(output_logits, thresh)
output_prob = model.sigmoid_fn(output_logits).data.cpu().clone().numpy()
y = eval_batch['y'].data.cpu().clone().numpy()
gold_pred = get_gold_pred_str(output_index, y, args.goal)
total_probs.extend(output_prob)
total_ys.extend(y)
total_gold_pred.extend(gold_pred)
# mrr_val = mrr(total_probs, total_ys)
# json.dump(gold_pred, open('nomulti_predictions.json', 'w'))
# np.save('y', total_ys)
# np.save('probs', total_probs)
# print('mrr_value: ', mrr_val)
# result, eval_str = metric_dicts(total_gold_pred)
result, eval_str = fine_grained_eval(total_gold_pred)
# fine_grained_eval(total_gold_pred)
p_and_r.append([result["ma_precision"], result["ma_recall"]])
print(eval_str)
np.save(saved_path + '/{}_pr_else_dev'.format(args.model_id), p_and_r)
示例7: build_model
# 需要导入模块: import models [as 别名]
# 或者: from models import Model [as 别名]
def build_model(config, word2id, id2word):
# ------ Model ------#
seq2seq = Seq2Seq(
vocab_size=len(word2id),
word_embed_size=config.embed_size,
num_layers=config.num_layers,
dropout_p=config.dropout,
enc_hidden_size=config.enc_hidden_size,
dec_hidden_size=config.dec_hidden_size,
use_focus=config.use_focus,
tie=config.weight_tie,
task=config.task,
rnn=config.rnn,
model=config.model,
feature_rich=config.feature_rich,
n_mixture=config.n_mixture if config.mixture_decoder else None
)
print('Created Seq2Seq!')
if config.use_focus and not config.eval_focus_oracle:
selector = FocusSelector(
word_embed_size=config.embed_size,
num_layers=config.num_layers,
enc_hidden_size=config.enc_hidden_size,
dec_hidden_size=config.dec_hidden_size,
n_mixture=config.n_mixture,
dropout_p=0.2,
rnn=config.rnn,
seq2seq_model=config.model,
task=config.task,
threshold=config.threshold,
feature_rich=config.feature_rich
)
# Selector share all embeddings with Seq2Seq model
if config.feature_rich:
selector.add_embedding(
seq2seq.word_embed,
seq2seq.answer_position_embed,
seq2seq.ner_embed,
seq2seq.pos_embed,
seq2seq.case_embed)
else:
selector.add_embedding(
seq2seq.word_embed)
print('Created Focus Selector!')
else:
selector = None
model = Model(seq2seq, selector)
model.word2id = word2id
model.id2word = id2word
print(model)
return model
示例8: run
# 需要导入模块: import models [as 别名]
# 或者: from models import Model [as 别名]
def run():
# arguments
parser = argparse.ArgumentParser()
parser.add_argument('-eid', '--experiment_id', type=str)
parser.add_argument('-d', '--directory', type=str, default=DIRECTORY)
parser.add_argument('-i', '--input_image', type=str)
parser.add_argument('-oi', '--output_image', type=str)
parser.add_argument('-oo', '--output_obj', type=str)
parser.add_argument('-s', '--seed', type=int, default=RANDOM_SEED)
parser.add_argument('-g', '--gpu', type=int, default=GPU)
args = parser.parse_args()
directory_output = os.path.join(args.directory, args.experiment_id)
# set random seed, gpu
random.seed(args.seed)
np.random.seed(args.seed)
cp.random.seed(args.seed)
chainer.cuda.get_device(args.gpu).use()
# load dataset
image_in = skimage.io.imread(args.input_image).astype('float32') / 255
if image_in.ndim != 3 or image_in.shape[-1] != 4:
raise Exception('Input must be a RGBA image.')
images_in = image_in.transpose((2, 0, 1))[None, :, :, :]
images_in = chainer.cuda.to_gpu(images_in)
# setup model & optimizer
model = models.Model()
model.to_gpu()
chainer.serializers.load_npz(os.path.join(directory_output, 'model.npz'), model)
# reconstruct .obj
vertices, faces = model.reconstruct(images_in)
neural_renderer.save_obj(args.output_obj, vertices.data.get()[0], faces.get()[0])
# render reconstructed shape
ones = chainer.cuda.to_gpu(np.ones((16,), 'float32'))
distances = 2.732 * ones
elevations = 30. * ones
azimuths = chainer.cuda.to_gpu(np.arange(0, 360, 360. / 16.).astype('float32')) * ones
viewpoints = neural_renderer.get_points_from_angles(distances, elevations, azimuths)
images_out = model.reconstruct_and_render(chainer.functions.tile(images_in, (16, 1, 1, 1)), viewpoints)
image_out = tile_images(images_out.data.get())
image_out = (image_out * 255).clip(0, 255).astype('uint8')
skimage.io.imsave(args.output_image, image_out)
示例9: run
# 需要导入模块: import models [as 别名]
# 或者: from models import Model [as 别名]
def run():
# arguments
parser = argparse.ArgumentParser()
parser.add_argument('-eid', '--experiment_id', type=str)
parser.add_argument('-d', '--model_directory', type=str, default=MODEL_DIRECTORY)
parser.add_argument('-dd', '--dataset_directory', type=str, default=DATASET_DIRECTORY)
parser.add_argument('-cls', '--class_ids', type=str, default=CLASS_IDS_ALL)
parser.add_argument('-bs', '--batch_size', type=int, default=BATCH_SIZE)
parser.add_argument('-ls', '--lambda_smoothness', type=float, default=LAMBDA_SMOOTHNESS)
parser.add_argument('-lr', '--learning_rate', type=float, default=LEARNING_RATE)
parser.add_argument('-lrp', '--lr_reduce_point', type=float, default=LR_REDUCE_POINT)
parser.add_argument('-ni', '--num_iterations', type=int, default=NUM_ITERATIONS)
parser.add_argument('-li', '--log_interval', type=int, default=LOG_INTERVAL)
parser.add_argument('-s', '--seed', type=int, default=RANDOM_SEED)
parser.add_argument('-g', '--gpu', type=int, default=GPU)
args = parser.parse_args()
directory_output = os.path.join(args.model_directory, args.experiment_id)
# set random seed, gpu
random.seed(args.seed)
np.random.seed(args.seed)
cp.random.seed(args.seed)
chainer.cuda.get_device(args.gpu).use()
# load dataset
dataset_train = datasets.ShapeNet(args.dataset_directory, args.class_ids.split(','), 'train')
dataset_val = datasets.ShapeNet(args.dataset_directory, args.class_ids.split(','), 'val')
train_iter = training.MyIterator(dataset_train, args.batch_size)
# setup model & optimizer
model = models.Model(lambda_smoothness=args.lambda_smoothness)
model.to_gpu()
optimizer = neural_renderer.Adam(args.learning_rate)
optimizer.setup(model)
# setup trainer
updater = chainer.training.StandardUpdater(train_iter, optimizer, converter=training.my_convertor)
trainer = chainer.training.Trainer(updater, stop_trigger=(args.num_iterations, 'iteration'), out=directory_output)
trainer.extend(chainer.training.extensions.LogReport(trigger=(args.log_interval, 'iteration')))
trainer.extend(chainer.training.extensions.PrintReport(
['iteration', 'main/loss_silhouettes', 'main/loss_smoothness', 'val/iou', 'elapsed_time']))
trainer.extend(chainer.training.extensions.ProgressBar(update_interval=10))
trainer.extend(
functools.partial(training.validation, model=model, dataset=dataset_val),
name='validation',
priority=chainer.training.PRIORITY_WRITER,
trigger=(args.log_interval, 'iteration'))
trainer.extend(
functools.partial(
training.lr_shift, optimizer=optimizer, iterations=[args.num_iterations * args.lr_reduce_point]),
name='lr_shift',
trigger=(1, 'iteration'))
# main loop
trainer.run()
# save model
chainer.serializers.save_npz(os.path.join(directory_output, 'model.npz'), model)