当前位置: 首页>>代码示例>>Python>>正文


Python modeling.BertConfig方法代码示例

本文整理汇总了Python中modeling.BertConfig方法的典型用法代码示例。如果您正苦于以下问题:Python modeling.BertConfig方法的具体用法?Python modeling.BertConfig怎么用?Python modeling.BertConfig使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在modeling的用法示例。


在下文中一共展示了modeling.BertConfig方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_config_to_json_string

# 需要导入模块: import modeling [as 别名]
# 或者: from modeling import BertConfig [as 别名]
def test_config_to_json_string(self):
        config = modeling.BertConfig(vocab_size=99, hidden_size=37)
        obj = json.loads(config.to_json_string())
        self.assertEqual(obj["vocab_size"], 99)
        self.assertEqual(obj["hidden_size"], 37) 
开发者ID:Socialbird-AILab,项目名称:BERT-Classification-Tutorial,代码行数:7,代码来源:modeling_test.py

示例2: test_config_to_json_string

# 需要导入模块: import modeling [as 别名]
# 或者: from modeling import BertConfig [as 别名]
def test_config_to_json_string(self):
    config = modeling.BertConfig(vocab_size=99, hidden_size=37)
    obj = json.loads(config.to_json_string())
    self.assertEqual(obj["vocab_size"], 99)
    self.assertEqual(obj["hidden_size"], 37) 
开发者ID:Nagakiran1,项目名称:Extending-Google-BERT-as-Question-and-Answering-model-and-Chatbot,代码行数:7,代码来源:modeling_test.py

示例3: test_config_to_json_string

# 需要导入模块: import modeling [as 别名]
# 或者: from modeling import BertConfig [as 别名]
def test_config_to_json_string(self):
    config = modeling.BertConfig(vocab_size=99, hidden_size=32)
    obj = json.loads(config.to_json_string())
    self.assertEqual(obj["vocab_size"], 99)
    self.assertEqual(obj["hidden_size"], 32) 
开发者ID:ofnote,项目名称:tsalib,代码行数:7,代码来源:modeling_test.py

示例4: bert_train_fn

# 需要导入模块: import modeling [as 别名]
# 或者: from modeling import BertConfig [as 别名]
def bert_train_fn():
    is_training=True
    hidden_size = 768
    num_labels = 10
    #batch_size=128
    max_seq_length=512
    use_one_hot_embeddings = False
    bert_config = modeling.BertConfig(vocab_size=21128, hidden_size=hidden_size, num_hidden_layers=12,
                                      num_attention_heads=12,intermediate_size=3072)

    input_ids = tf.placeholder(tf.int32, [batch_size, max_seq_length], name="input_ids")
    input_mask = tf.placeholder(tf.int32, [batch_size, max_seq_length], name="input_mask")
    segment_ids = tf.placeholder(tf.int32, [batch_size,max_seq_length],name="segment_ids")
    label_ids = tf.placeholder(tf.float32, [batch_size,num_labels], name="label_ids")
    loss, per_example_loss, logits, probabilities, model = create_model(bert_config, is_training, input_ids, input_mask,
                                                                        segment_ids, label_ids, num_labels,
                                                                        use_one_hot_embeddings)
    # 1. generate or load training/validation/test data. e.g. train:(X,y). X is input_ids,y is labels.

    # 2. train the model by calling create model, get loss
    gpu_config = tf.ConfigProto()
    gpu_config.gpu_options.allow_growth = True
    sess = tf.Session(config=gpu_config)
    sess.run(tf.global_variables_initializer())
    for i in range(1000):
        input_ids_=np.ones((batch_size,max_seq_length),dtype=np.int32)
        input_mask_=np.ones((batch_size,max_seq_length),dtype=np.int32)
        segment_ids_=np.ones((batch_size,max_seq_length),dtype=np.int32)
        label_ids_=np.ones((batch_size,num_labels),dtype=np.float32)
        feed_dict = {input_ids: input_ids_, input_mask: input_mask_,segment_ids:segment_ids_,label_ids:label_ids_}
        loss_ = sess.run([loss], feed_dict)
        print("loss:",loss_)
    # 3. eval the model from time to time 
开发者ID:brightmart,项目名称:text_classification,代码行数:35,代码来源:train_bert_toy_task.py


注:本文中的modeling.BertConfig方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。