本文整理汇总了Python中model_utils.init_from_checkpoint方法的典型用法代码示例。如果您正苦于以下问题:Python model_utils.init_from_checkpoint方法的具体用法?Python model_utils.init_from_checkpoint怎么用?Python model_utils.init_from_checkpoint使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类model_utils
的用法示例。
在下文中一共展示了model_utils.init_from_checkpoint方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_model_fn
# 需要导入模块: import model_utils [as 别名]
# 或者: from model_utils import init_from_checkpoint [as 别名]
def get_model_fn(self,
model_config,
run_config,
init_checkpoint,
model_type):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features,
labels,
mode,
params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
embeddings = self._create_model(model_config, run_config, input_ids, input_mask, segment_ids, model_type)
scaffold_fn = model_utils.init_from_checkpoint(FLAGS)
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
loss = tf.Variable(0.0, name="loss", dtype=tf.float32)
train_op, _, _ = model_utils.get_train_op(FLAGS, loss)
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=loss,
train_op=train_op,
scaffold_fn=scaffold_fn)
else:
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
predictions={ "embeddings": embeddings },
scaffold_fn=scaffold_fn)
return output_spec
return model_fn
示例2: get_model_fn
# 需要导入模块: import model_utils [as 别名]
# 或者: from model_utils import init_from_checkpoint [as 别名]
def get_model_fn():
"""doc."""
def model_fn(features, labels, mode, params):
"""doc."""
#### Training or Evaluation
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
assert is_training
#### Retrieve `mems` from `params["cache"]`
mems = {}
idx = 0
if FLAGS.mem_len > 0:
mems["mems"] = params["cache"]
#### Get loss from inputs
total_loss, new_mems, monitor_dict = function_builder.get_loss(
FLAGS, features, labels, mems, is_training)
#### Turn `new_mems` into `new_cache`
new_cache = []
if FLAGS.mem_len > 0:
new_cache += new_mems["mems"]
#### Check model parameters
num_params = sum([np.prod(v.shape) for v in tf.trainable_variables()])
tf.logging.info("#params: {}".format(num_params))
#### Configuring the optimizer
train_op, learning_rate, gnorm = model_utils.get_train_op(
FLAGS, total_loss)
monitor_dict["lr"] = learning_rate
monitor_dict["gnorm"] = gnorm
#### Customized initial checkpoint
scaffold_fn = model_utils.init_from_checkpoint(FLAGS, global_vars=True)
#### Creating host calls
host_call = function_builder.construct_scalar_host_call(
monitor_dict=monitor_dict,
model_dir=FLAGS.model_dir,
prefix="train/",
reduce_fn=tf.reduce_mean)
#### Constucting training TPUEstimatorSpec with new cache.
train_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode, loss=total_loss, train_op=train_op, host_call=host_call,
scaffold_fn=scaffold_fn)
train_spec.cache = new_cache
return train_spec
return model_fn
示例3: get_model_fn
# 需要导入模块: import model_utils [as 别名]
# 或者: from model_utils import init_from_checkpoint [as 别名]
def get_model_fn(self):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features,
labels,
mode,
params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
unique_id = features["unique_id"]
input_ids = features["input_ids"]
input_mask = features["input_mask"]
p_mask = features["p_mask"]
segment_ids = features["segment_ids"]
cls_index = features["cls_index"]
if is_training:
start_position = features["start_position"]
end_position = features["end_position"]
is_impossible = features["is_impossible"]
else:
start_position = None
end_position = None
is_impossible = None
loss, predicts = self._create_model(is_training, input_ids, input_mask,
p_mask, segment_ids, cls_index, start_position, end_position, is_impossible)
scaffold_fn = model_utils.init_from_checkpoint(FLAGS)
output_spec = None
if is_training:
train_op, _, _ = model_utils.get_train_op(FLAGS, loss)
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=loss,
train_op=train_op,
scaffold_fn=scaffold_fn)
else:
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
predictions={
"unique_id": unique_id,
"answer_prob": predicts["answer_prob"],
"start_prob": predicts["start_prob"],
"start_index": predicts["start_index"],
"end_prob": predicts["end_prob"],
"end_index": predicts["end_index"]
},
scaffold_fn=scaffold_fn)
return output_spec
return model_fn
示例4: get_model_fn
# 需要导入模块: import model_utils [as 别名]
# 或者: from model_utils import init_from_checkpoint [as 别名]
def get_model_fn(self,
label_list):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features,
labels,
mode,
params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
def metric_fn(label_ids,
predict_ids):
precision = tf.metrics.precision(labels=label_ids, predictions=predict_ids)
recall = tf.metrics.recall(labels=label_ids, predictions=predict_ids)
metric = {
"precision": precision,
"recall": recall,
}
return metric
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_masks = features["input_masks"]
segment_ids = features["segment_ids"]
label_ids = features["label_ids"] if mode in [tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL] else None
loss, predict_ids = self._create_model(input_ids, input_masks, segment_ids, label_ids, label_list, mode)
scaffold_fn = model_utils.init_from_checkpoint(FLAGS)
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
train_op, _, _ = model_utils.get_train_op(FLAGS, loss)
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=loss,
train_op=train_op,
scaffold_fn=scaffold_fn)
elif mode == tf.estimator.ModeKeys.EVAL:
masked_label_ids = self._get_masked_data(label_ids, label_list)
masked_predict_ids = self._get_masked_data(predict_ids, label_list)
eval_metrics = (metric_fn, [masked_label_ids, masked_predict_ids])
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=loss,
eval_metrics=eval_metrics,
scaffold_fn=scaffold_fn)
else:
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
predictions={ "predict": predict_ids },
scaffold_fn=scaffold_fn)
return output_spec
return model_fn
示例5: get_model_fn
# 需要导入模块: import model_utils [as 别名]
# 或者: from model_utils import init_from_checkpoint [as 别名]
def get_model_fn(self,
sent_label_list):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features,
labels,
mode,
params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
def metric_fn(sent_label_ids,
sent_predict_ids):
sent_accuracy = tf.metrics.accuracy(labels=sent_label_ids, predictions=sent_predict_ids)
metric = {
"sent_accuracy": sent_accuracy,
}
return metric
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_masks = features["input_masks"]
segment_ids = features["segment_ids"]
sent_label_ids = features["sent_label_ids"] if mode in [tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL] else None
loss, sent_predict_ids, sent_predict_scores, sent_predict_probs = self._create_model(input_ids, input_masks, segment_ids, sent_label_ids, sent_label_list, mode)
scaffold_fn = model_utils.init_from_checkpoint(FLAGS)
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
train_op, _, _ = model_utils.get_train_op(FLAGS, loss)
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=loss,
train_op=train_op,
scaffold_fn=scaffold_fn)
elif mode == tf.estimator.ModeKeys.EVAL:
eval_metrics = (metric_fn, [sent_label_ids, sent_predict_ids])
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=loss,
eval_metrics=eval_metrics,
scaffold_fn=scaffold_fn)
else:
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
predictions={
"sent_predict_id": sent_predict_ids,
"sent_predict_score": sent_predict_scores,
"sent_predict_prob": sent_predict_probs
},
scaffold_fn=scaffold_fn)
return output_spec
return model_fn