当前位置: 首页>>代码示例>>Python>>正文


Python model_ptn.model_PTN方法代码示例

本文整理汇总了Python中model_ptn.model_PTN方法的典型用法代码示例。如果您正苦于以下问题:Python model_ptn.model_PTN方法的具体用法?Python model_ptn.model_PTN怎么用?Python model_ptn.model_PTN使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在model_ptn的用法示例。


在下文中一共展示了model_ptn.model_PTN方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: import model_ptn [as 别名]
# 或者: from model_ptn import model_PTN [as 别名]
def main(argv=()):
  del argv  # Unused.
  eval_dir = os.path.join(FLAGS.checkpoint_dir, FLAGS.model_name, 'train')
  log_dir = os.path.join(FLAGS.checkpoint_dir, FLAGS.model_name,
                         'eval_%s' % FLAGS.eval_set)
  if not os.path.exists(eval_dir):
    os.makedirs(eval_dir)
  if not os.path.exists(log_dir):
    os.makedirs(log_dir)
  g = tf.Graph()

  with g.as_default():
    eval_params = FLAGS
    eval_params.batch_size = 1
    eval_params.step_size = FLAGS.num_views
    ###########
    ## model ##
    ###########
    model = model_ptn.model_PTN(eval_params)
    ##########
    ## data ##
    ##########
    eval_data = model.get_inputs(
        FLAGS.inp_dir,
        FLAGS.dataset_name,
        eval_params.eval_set,
        eval_params.batch_size,
        eval_params.image_size,
        eval_params.vox_size,
        is_training=False)
    inputs = model.preprocess_with_all_views(eval_data)
    ##############
    ## model_fn ##
    ##############
    model_fn = model.get_model_fn(is_training=False, run_projection=False)
    outputs = model_fn(inputs)
    #############
    ## metrics ##
    #############
    names_to_values, names_to_updates = model.get_metrics(inputs, outputs)
    del names_to_values
    ################
    ## evaluation ##
    ################
    num_batches = eval_data['num_samples']
    slim.evaluation.evaluation_loop(
        master=FLAGS.master,
        checkpoint_dir=eval_dir,
        logdir=log_dir,
        num_evals=num_batches,
        eval_op=names_to_updates.values(),
        eval_interval_secs=FLAGS.eval_interval_secs) 
开发者ID:rky0930,项目名称:yolo_v2,代码行数:54,代码来源:eval_ptn.py

示例2: main

# 需要导入模块: import model_ptn [as 别名]
# 或者: from model_ptn import model_PTN [as 别名]
def main(argv=()):
  del argv  # Unused.
  eval_dir = os.path.join(FLAGS.checkpoint_dir, FLAGS.model_name, 'train')
  log_dir = os.path.join(FLAGS.checkpoint_dir, FLAGS.model_name,
                         'eval_%s' % FLAGS.eval_set)
  if not os.path.exists(eval_dir):
    os.makedirs(eval_dir)
  if not os.path.exists(log_dir):
    os.makedirs(log_dir)
  g = tf.Graph()

  with g.as_default():
    eval_params = FLAGS
    eval_params.batch_size = 1
    eval_params.step_size = FLAGS.num_views
    ###########
    ## model ##
    ###########
    model = model_ptn.model_PTN(eval_params)
    ##########
    ## data ##
    ##########
    eval_data = model.get_inputs(
        FLAGS.data_sst_path,
        FLAGS.dataset_name,
        eval_params.eval_set,
        eval_params.batch_size,
        eval_params.image_size,
        eval_params.vox_size,
        is_training=False)
    inputs = model.preprocess_with_all_views(eval_data)
    ##############
    ## model_fn ##
    ##############
    model_fn = model.get_model_fn(is_training=False, run_projection=False)
    outputs = model_fn(inputs)
    #############
    ## metrics ##
    #############
    names_to_values, names_to_updates = model.get_metrics(inputs, outputs)
    del names_to_values
    ################
    ## evaluation ##
    ################
    num_batches = eval_data['num_samples']
    slim.evaluation.evaluation_loop(
        master=FLAGS.master,
        checkpoint_dir=eval_dir,
        logdir=log_dir,
        num_evals=num_batches,
        eval_op=names_to_updates.values(),
        eval_interval_secs=FLAGS.eval_interval_secs) 
开发者ID:loicmarie,项目名称:hands-detection,代码行数:54,代码来源:eval_ptn.py


注:本文中的model_ptn.model_PTN方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。