当前位置: 首页>>代码示例>>Python>>正文


Python cython_bbox.bbox_overlaps方法代码示例

本文整理汇总了Python中model.utils.cython_bbox.bbox_overlaps方法的典型用法代码示例。如果您正苦于以下问题:Python cython_bbox.bbox_overlaps方法的具体用法?Python cython_bbox.bbox_overlaps怎么用?Python cython_bbox.bbox_overlaps使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在model.utils.cython_bbox的用法示例。


在下文中一共展示了cython_bbox.bbox_overlaps方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create_roidb_from_box_list

# 需要导入模块: from model.utils import cython_bbox [as 别名]
# 或者: from model.utils.cython_bbox import bbox_overlaps [as 别名]
def create_roidb_from_box_list(self, box_list, gt_roidb):
    assert len(box_list) == self.num_images, \
      'Number of boxes must match number of ground-truth images'
    roidb = []
    for i in range(self.num_images):
      boxes = box_list[i]
      num_boxes = boxes.shape[0]
      overlaps = np.zeros((num_boxes, self.num_classes), dtype=np.float32)

      if gt_roidb is not None and gt_roidb[i]['boxes'].size > 0:
        gt_boxes = gt_roidb[i]['boxes']
        gt_classes = gt_roidb[i]['gt_classes']
        gt_overlaps = bbox_overlaps(boxes.astype(np.float),
                                    gt_boxes.astype(np.float))
        argmaxes = gt_overlaps.argmax(axis=1)
        maxes = gt_overlaps.max(axis=1)
        I = np.where(maxes > 0)[0]
        overlaps[I, gt_classes[argmaxes[I]]] = maxes[I]

      overlaps = scipy.sparse.csr_matrix(overlaps)
      roidb.append({
        'boxes': boxes,
        'gt_classes': np.zeros((num_boxes,), dtype=np.int32),
        'gt_overlaps': overlaps,
        'flipped': False,
        'seg_areas': np.zeros((num_boxes,), dtype=np.float32),
      })
    return roidb 
开发者ID:guoruoqian,项目名称:cascade-rcnn_Pytorch,代码行数:30,代码来源:imdb.py

示例2: create_roidb_from_box_list

# 需要导入模块: from model.utils import cython_bbox [as 别名]
# 或者: from model.utils.cython_bbox import bbox_overlaps [as 别名]
def create_roidb_from_box_list(self, box_list, gt_roidb):
        assert len(box_list) == self.num_images, \
            'Number of boxes must match number of ground-truth images'
        roidb = []
        for i in range(self.num_images):
            boxes = box_list[i]
            num_boxes = boxes.shape[0]
            overlaps = np.zeros((num_boxes, self.num_classes), dtype=np.float32)

            if gt_roidb is not None and gt_roidb[i]['boxes'].size > 0:
                gt_boxes = gt_roidb[i]['boxes']
                gt_classes = gt_roidb[i]['gt_classes']
                gt_overlaps = bbox_overlaps(boxes.astype(np.float),
                                            gt_boxes.astype(np.float))
                argmaxes = gt_overlaps.argmax(axis=1)
                maxes = gt_overlaps.max(axis=1)
                I = np.where(maxes > 0)[0]
                overlaps[I, gt_classes[argmaxes[I]]] = maxes[I]

            overlaps = scipy.sparse.csr_matrix(overlaps)
            roidb.append({
                'boxes': boxes,
                'gt_classes': np.zeros((num_boxes,), dtype=np.int32),
                'gt_overlaps': overlaps,
                'flipped': False,
                'seg_areas': np.zeros((num_boxes,), dtype=np.float32),
            })
        return roidb 
开发者ID:ucbdrive,项目名称:3d-vehicle-tracking,代码行数:30,代码来源:imdb.py

示例3: _sample_rois

# 需要导入模块: from model.utils import cython_bbox [as 别名]
# 或者: from model.utils.cython_bbox import bbox_overlaps [as 别名]
def _sample_rois(all_rois, proposals, num_classes):
    """Generate a random sample of RoIs comprising foreground and background
    examples.
    """
    # overlaps: (rois x gt_boxes)
    gt_boxes = proposals['gt_boxes']
    gt_labels = proposals['gt_classes']
    gt_scores = proposals['gt_scores']
    overlaps = bbox_overlaps(
        np.ascontiguousarray(all_rois[0], dtype=np.float),
        np.ascontiguousarray(gt_boxes, dtype=np.float))
    try :
        gt_assignment = overlaps.argmax(axis=1)
        max_overlaps = overlaps.max(axis=1)
    except :
        pdb.set_trace()

    labels = gt_labels[gt_assignment, 0]
    cls_loss_weights = gt_scores[gt_assignment, 0]
    # Select foreground RoIs as those with >= FG_THRESH overlap
    fg_inds = np.where(max_overlaps >= 0.5)[0]

    # Select background RoIs as those within [BG_THRESH_LO, BG_THRESH_HI)
    bg_inds = np.where(max_overlaps < 0.5)[0]

    labels[bg_inds] = 0
    real_labels = np.zeros((labels.shape[0], 21))
    for i in range(labels.shape[0]) :
        real_labels[i, labels[i]] = 1
    rois = all_rois
    return real_labels, rois, cls_loss_weights 
开发者ID:jd730,项目名称:OICR-pytorch,代码行数:33,代码来源:layer.py


注:本文中的model.utils.cython_bbox.bbox_overlaps方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。