本文整理汇总了Python中model.utils.blob.im_list_to_blob方法的典型用法代码示例。如果您正苦于以下问题:Python blob.im_list_to_blob方法的具体用法?Python blob.im_list_to_blob怎么用?Python blob.im_list_to_blob使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类model.utils.blob
的用法示例。
在下文中一共展示了blob.im_list_to_blob方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _get_image_blob
# 需要导入模块: from model.utils import blob [as 别名]
# 或者: from model.utils.blob import im_list_to_blob [as 别名]
def _get_image_blob(roidb, scale_inds):
num_images = len(roidb)
processed_ims = []
im_scales = []
for i in range(num_images):
im = cv2.imread(roidb[i]['file_path'])
if roidb[i]['flipped']:
im = im[:, ::-1, :]
target_size = cfg.TRAIN.SCALES[scale_inds[i]]
im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
cfg.TRAIN.MAX_SIZE)
im_scales.append(im_scale)
processed_ims.append(im)
blob = im_list_to_blob(processed_ims)
return blob, im_scales
示例2: _get_image_blob
# 需要导入模块: from model.utils import blob [as 别名]
# 或者: from model.utils.blob import im_list_to_blob [as 别名]
def _get_image_blob(im, im_scales):
"""
:param im: input image
:param im_scales: a list of scale coefficients
:return: A list of network blobs each containing a resized ver. of the image
"""
# Subtract the mean
im_copy = im.astype(np.float32, copy=True) - cfg.PIXEL_MEANS
# Append all scales to form a blob
blobs = []
for scale in im_scales:
if scale == 1.0:
blobs.append({'data': im_list_to_blob([im_copy])})
else:
blobs.append({'data': im_list_to_blob([cv2.resize(im_copy, None, None, fx=scale, fy=scale,
interpolation=cv2.INTER_LINEAR)])})
return blobs
示例3: _get_image_blob
# 需要导入模块: from model.utils import blob [as 别名]
# 或者: from model.utils.blob import im_list_to_blob [as 别名]
def _get_image_blob(im):
"""Converts an image into a network input.
Arguments:
im (ndarray): a color image in BGR order
Returns:
blob (ndarray): a data blob holding an image pyramid
im_scale_factors (list): list of image scales (relative to im) used
in the image pyramid
"""
im_orig = im.astype(np.float32, copy=True) # RGB
im_orig /= 255.0
im_orig -= cfg.PIXEL_MEANS
im_orig /= cfg.PIXEL_STDS
im_shape = im_orig.shape
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
processed_ims = []
im_scale_factors = []
for target_size in cfg.TEST.SCALES:
im_scale = float(target_size) / float(im_size_min)
# Prevent the biggest axis from being more than MAX_SIZE
if np.round(im_scale * im_size_max) > cfg.TEST.MAX_SIZE:
im_scale = float(cfg.TEST.MAX_SIZE) / float(im_size_max)
im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale,
interpolation=cv2.INTER_LINEAR)
im_scale_factors.append(im_scale)
processed_ims.append(im)
# Create a blob to hold the input images
blob = im_list_to_blob(processed_ims)
return blob, np.array(im_scale_factors)
示例4: _get_image_blob
# 需要导入模块: from model.utils import blob [as 别名]
# 或者: from model.utils.blob import im_list_to_blob [as 别名]
def _get_image_blob(roidb, scale_inds):
"""Builds an input blob from the images in the roidb at the specified
scales.
"""
num_images = len(roidb)
processed_ims = []
im_scales = []
for i in range(num_images):
#im = cv2.imread(roidb[i]['image'])
im = imread(roidb[i]['image'])
if len(im.shape) == 2:
im = im[:,:,np.newaxis]
im = np.concatenate((im,im,im), axis=2)
# flip the channel, since the original one using cv2
# rgb -> bgr
# im = im[:,:,::-1]
if roidb[i]['flipped']:
im = im[:, ::-1, :]
target_size = cfg.TRAIN.SCALES[scale_inds[i]]
im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, cfg.PIXEL_STDS, target_size,
cfg.TRAIN.MAX_SIZE)
im_scales.append(im_scale)
processed_ims.append(im)
# Create a blob to hold the input images
blob = im_list_to_blob(processed_ims)
return blob, im_scales
示例5: _get_image_blob
# 需要导入模块: from model.utils import blob [as 别名]
# 或者: from model.utils.blob import im_list_to_blob [as 别名]
def _get_image_blob(im):
"""Converts an image into a network input.
Arguments:
im (ndarray): a color image in BGR order
Returns:
blob (ndarray): a data blob holding an image pyramid
im_scale_factors (list): list of image scales (relative to im) used
in the image pyramid
"""
im_orig = im.astype(np.float32, copy=True)
im_orig -= cfg.PIXEL_MEANS
im_shape = im_orig.shape
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
processed_ims = []
im_scale_factors = []
for target_size in cfg.TEST.SCALES:
im_scale = float(target_size) / float(im_size_min)
# Prevent the biggest axis from being more than MAX_SIZE
if np.round(im_scale * im_size_max) > cfg.TEST.MAX_SIZE:
im_scale = float(cfg.TEST.MAX_SIZE) / float(im_size_max)
im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale,
interpolation=cv2.INTER_LINEAR)
im_scale_factors.append(im_scale)
processed_ims.append(im)
# Create a blob to hold the input images
blob = im_list_to_blob(processed_ims)
return blob, np.array(im_scale_factors)
示例6: _get_image_blob
# 需要导入模块: from model.utils import blob [as 别名]
# 或者: from model.utils.blob import im_list_to_blob [as 别名]
def _get_image_blob(roidb, scale_inds):
"""Builds an input blob from the images in the roidb at the specified
scales.
"""
num_images = len(roidb)
processed_ims = []
im_scales = []
for i in range(num_images):
im = cv2.imread(roidb[i]['image'])
#im = imread(roidb[i]['image'])
if len(im.shape) == 2:
im = im[:,:,np.newaxis]
im = np.concatenate((im,im,im), axis=2)
# flip the channel, since the original one using cv2
# rgb -> bgr
#im = im[:,:,::-1]
if roidb[i]['flipped']:
im = im[:, ::-1, :]
target_size = cfg.TRAIN.SCALES[scale_inds[i]]
im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
cfg.TRAIN.MAX_SIZE)
im_scales.append(im_scale)
processed_ims.append(im)
# Create a blob to hold the input images
blob = im_list_to_blob(processed_ims)
return blob, im_scales
示例7: _get_image_blob
# 需要导入模块: from model.utils import blob [as 别名]
# 或者: from model.utils.blob import im_list_to_blob [as 别名]
def _get_image_blob(self, im, frame_id):
'''Convert image into network input.
:param im: BGR nd.array
:param frame_id: frame number in the given video
:return image (frame) blob
'''
im_orig = im.astype(np.float32, copy=True)
im_orig -= cfg.PIXEL_MEANS
im_shape = im_orig.shape
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
processed_ims = []
im_scale_factors = []
for target_size in cfg.TEST.SCALES:
im_scale = float(target_size) / float(im_size_min)
# Prevent the biggest axis from being more than MAX_SIZE
if np.round(im_scale * im_size_max) > cfg.TEST.MAX_SIZE:
im_scale = float(cfg.TEST.MAX_SIZE) / float(im_size_max)
im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale,interpolation=cv2.INTER_LINEAR)
im_scale_factors.append(im_scale)
processed_ims.append(im)
blob = im_list_to_blob(processed_ims)
scales = np.array(im_scale_factors)
blobs = {'data': blob}
blobs['im_info'] = np.array(
[[blob.shape[1], blob.shape[2], scales[0]]], dtype=np.float32)
blobs['frame_number'] = np.array([[frame_id]])
return blobs
示例8: _get_image_blob
# 需要导入模块: from model.utils import blob [as 别名]
# 或者: from model.utils.blob import im_list_to_blob [as 别名]
def _get_image_blob(im):
"""Converts an image into a network input.
Arguments:
im (ndarray): a color image in BGR order
Returns:
blob (ndarray): a data blob holding an image pyramid
im_scale_factors (list): list of image scales (relative to im) used
in the image pyramid
"""
im_orig = im.astype(np.float32, copy=True)
im_orig -= cfg.PIXEL_MEANS
im_shape = im_orig.shape
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
processed_ims = []
im_scale_factors = []
for target_size in cfg.TEST.SCALES:
im_scale = float(target_size) / float(im_size_min)
# Prevent the biggest axis from being more than MAX_SIZE
if np.round(im_scale * im_size_max) > cfg.TEST.MAX_SIZE:
im_scale = float(cfg.TEST.MAX_SIZE) / float(im_size_max)
im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale,
interpolation=cv2.INTER_LINEAR)
im_scale_factors.append(im_scale)
processed_ims.append(im)
# Create a blob to hold the input images
blob = im_list_to_blob(processed_ims)
return blob, np.array(im_scale_factors)
示例9: _get_image_blob
# 需要导入模块: from model.utils import blob [as 别名]
# 或者: from model.utils.blob import im_list_to_blob [as 别名]
def _get_image_blob(roidb, scale_inds):
"""Builds an input blob from the images in the roidb at the specified
scales.
"""
num_images = len(roidb)
processed_ims = []
im_scales = []
for i in range(num_images):
# im = cv2.imread(roidb[i]['image'])
im = imread(roidb[i]['image'])
if len(im.shape) == 2:
im = im[:, :, np.newaxis]
im = np.concatenate((im, im, im), axis=2)
# flip the channel, since the original one using cv2
# rgb -> bgr
im = im[:, :, ::-1]
if roidb[i]['flipped']:
im = im[:, ::-1, :]
target_size = cfg.TRAIN.SCALES[scale_inds[i]]
im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
cfg.TRAIN.MAX_SIZE)
im_scales.append(im_scale)
processed_ims.append(im)
# Create a blob to hold the input images
blob = im_list_to_blob(processed_ims)
return blob, im_scales
示例10: _get_image_blob
# 需要导入模块: from model.utils import blob [as 别名]
# 或者: from model.utils.blob import im_list_to_blob [as 别名]
def _get_image_blob(roidb, scale_inds):
"""Builds an input blob from the images in the roidb at the specified
scales.
"""
num_images = len(roidb)
processed_ims = []
im_scales = []
for i in range(num_images):
#im = cv2.imread(roidb[i]['image'])
im = imread(roidb[i]['image'])
if len(im.shape) == 2:
im = im[:,:,np.newaxis]
im = np.concatenate((im,im,im), axis=2)
# flip the channel, since the original one using cv2
# rgb -> bgr
im = im[:,:,::-1]
if roidb[i]['flipped']:
im = im[:, ::-1, :]
target_size = cfg.TRAIN.SCALES[scale_inds[i]]
im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
cfg.TRAIN.MAX_SIZE)
im_scales.append(im_scale)
processed_ims.append(im)
# Create a blob to hold the input images
blob = im_list_to_blob(processed_ims)
return blob, im_scales
示例11: _get_image_blob
# 需要导入模块: from model.utils import blob [as 别名]
# 或者: from model.utils.blob import im_list_to_blob [as 别名]
def _get_image_blob(roidb, target_size):
"""Builds an input blob from the images in the roidb at the specified
scales.
"""
num_images = len(roidb)
processed_ims = []
im_scales = []
for i in range(num_images):
#im = cv2.imread(roidb[i]['image'])
im = imread(roidb[i]['image'])
if len(im.shape) == 2:
im = im[:,:,np.newaxis]
im = np.concatenate((im,im,im), axis=2)
# flip the channel, since the original one using cv2
# rgb -> bgr
im = im[:,:,::-1]
if roidb[i]['flipped']:
im = im[:, ::-1, :]
im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size[i],
cfg.TRAIN.MAX_SIZE)
im_scales.append(im_scale)
processed_ims.append(im)
# Create a blob to hold the input images
blob = im_list_to_blob(processed_ims)
return blob, im_scales
示例12: _get_image_blob
# 需要导入模块: from model.utils import blob [as 别名]
# 或者: from model.utils.blob import im_list_to_blob [as 别名]
def _get_image_blob(roidb, scale_inds):
"""Builds an input blob from the images in the roidb at the specified
scales.
"""
num_images = len(roidb)
processed_ims = []
im_scales = []
for i in range(num_images):
#im = cv2.imread(roidb[i]['image'])
im = imread(roidb[i]['image'])
if len(im.shape) == 2:
im = im[:,:,np.newaxis]
im = np.concatenate((im,im,im), axis=2)
# flip the channel, since the original one using cv2
# rgb -> bgr
# im = im[:,:,::-1]
if roidb[i]['flipped']:
im = im[:, ::-1, :]
target_size = cfg.TRAIN.SCALES[scale_inds[i]]
im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
cfg.TRAIN.MAX_SIZE)
im_scales.append(im_scale)
processed_ims.append(im)
# Create a blob to hold the input images
blob = im_list_to_blob(processed_ims)
return blob, im_scales
示例13: get_image_blob
# 需要导入模块: from model.utils import blob [as 别名]
# 或者: from model.utils.blob import im_list_to_blob [as 别名]
def get_image_blob(im):
"""Converts an image into a network input.
Arguments:
im (ndarray): a color image
Returns:
blob (ndarray): a data blob holding an image pyramid
im_scale_factors (list): list of image scales (relative to im) used
in the image pyramid
"""
im_orig = im.astype(np.float32, copy=True)
im_orig -= cfg.PIXEL_MEANS
im_shape = im_orig.shape
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
processed_ims = []
im_scale_factors = []
for target_size in cfg.TEST.SCALES:
im_scale = float(target_size) / float(im_size_min)
# Prevent the biggest axis from being more than MAX_SIZE
if np.round(im_scale * im_size_max) > cfg.TEST.MAX_SIZE:
im_scale = float(cfg.TEST.MAX_SIZE) / float(im_size_max)
im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale,
interpolation=cv2.INTER_LINEAR)
im_scale_factors.append(im_scale)
processed_ims.append(im)
# Create a blob to hold the input images
blob = im_list_to_blob(processed_ims)
return blob, np.array(im_scale_factors)
示例14: _get_image_blob
# 需要导入模块: from model.utils import blob [as 别名]
# 或者: from model.utils.blob import im_list_to_blob [as 别名]
def _get_image_blob(im):
"""Converts an image into a network input.
Arguments:
im (ndarray): a color image in BGR order
Returns:
blob (ndarray): a data blob holding an image pyramid
im_scale_factors (list): list of image scales (relative to im) used
in the image pyramid
im_shapes: the list of image shapes
"""
im_orig = im.astype(np.float32, copy=True)
im_orig -= cfg.PIXEL_MEANS
im_shape = im_orig.shape
im_size_max = np.max(im_shape[0:2])
processed_ims = []
im_scale_factors = []
for target_size in cfg.TEST.SCALES:
im_scale = float(target_size) / float(im_size_max)
im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale,
interpolation=cv2.INTER_LINEAR)
im_scale_factors.append(im_scale)
processed_ims.append(im_list_to_blob([im]))
blob = processed_ims
return blob, np.array(im_scale_factors)
示例15: _get_image_blob
# 需要导入模块: from model.utils import blob [as 别名]
# 或者: from model.utils.blob import im_list_to_blob [as 别名]
def _get_image_blob(roidb, scale_inds):
"""Builds an input blob from the images in the roidb at the specified
scales.
"""
num_images = len(roidb)
processed_ims = []
im_scales = []
im_shapes = np.zeros((0, 2), dtype=np.float32)
for i in range(num_images):
img_path = roidb[i]['image']
im = cv2.imread(roidb[i]['image'])
target_size = cfg.TRAIN.SCALES[scale_inds[i]]
if roidb[i]['flipped']:
im = im[:, ::-1, :]
im, im_scale, im_shape = prep_im_for_blob(im, cfg.PIXEL_MEANS,
target_size,
cfg.TRAIN.MAX_SIZE)
im_scales.append(im_scale)
processed_ims.append(im)
im_shapes = np.vstack((im_shapes, im_shape))
# Create a blob to hold the input images
blob = im_list_to_blob(processed_ims)
return blob, im_scales, im_shapes