当前位置: 首页>>代码示例>>Python>>正文


Python net.Net方法代码示例

本文整理汇总了Python中model.net.Net方法的典型用法代码示例。如果您正苦于以下问题:Python net.Net方法的具体用法?Python net.Net怎么用?Python net.Net使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在model.net的用法示例。


在下文中一共展示了net.Net方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: from model import net [as 别名]
# 或者: from model.net import Net [as 别名]
def main():
	dataloader = DataLoader(config, args.data_dir, args.img_dir, args.year, args.test_set, batch_size)

	model = Net(config=config, no_words=dataloader.tokenizer.no_words, no_answers=dataloader.tokenizer.no_answers,
				resnet_model=resnet_model, lstm_size=lstm_size, emb_size=emb_size, use_pretrained=False).cuda()
	
	optimizer = optim.Adam(model.parameters(), lr=lr)

	train(dataloader, model, optimizer) 
开发者ID:ap229997,项目名称:Conditional-Batch-Norm,代码行数:11,代码来源:main.py

示例2: build_test

# 需要导入模块: from model import net [as 别名]
# 或者: from model.net import Net [as 别名]
def build_test(self, build_type='both'):
        self.loader = DataLoader(trainable=False, **self.config)
        self.num_scales = self.loader.num_scales
        self.num_source = self.loader.num_source
        with tf.name_scope('data_loading'):
            self.tgt_image_uint8 = tf.placeholder(tf.uint8, [self.loader.batch_size,
                    self.loader.img_height, self.loader.img_width, 3])
            self.tgt_image = tf.image.convert_image_dtype(self.tgt_image_uint8, dtype=tf.float32)
            tgt_image_net = self.preprocess_image(self.tgt_image)
            if build_type != 'depth':
                self.src_image_stack_uint8 = tf.placeholder(tf.uint8, [self.loader.batch_size,
                    self.loader.img_height, self.loader.img_width, 3 * self.num_source])
                self.src_image_stack = tf.image.convert_image_dtype(self.src_image_stack_uint8, dtype=tf.float32)
                src_image_stack_net = self.preprocess_image(self.src_image_stack)

        with tf.variable_scope('monodepth2_model', reuse=tf.AUTO_REUSE) as scope:
            net_builder = Net(False, **self.config)

            res18_tc, skips_tc = net_builder.build_resnet18(tgt_image_net)
            pred_disp = net_builder.build_disp_net(res18_tc, skips_tc)
            pred_disp_rawscale = [tf.image.resize_bilinear(pred_disp[i], [self.loader.img_height, self.loader.img_width]) for i in
                range(self.num_scales)]
            pred_depth_rawscale = disp_to_depth(pred_disp_rawscale, self.min_depth, self.max_depth)

            self.pred_depth = pred_depth_rawscale[0]
            self.pred_disp = pred_disp_rawscale[0]

            if build_type != 'depth':
                num_source = np.int(src_image_stack_net.get_shape().as_list()[-1] // 3)
                assert num_source == 2

                if self.pose_type == 'seperate':
                    res18_ctp, _ = net_builder.build_resnet18(
                        tf.concat([src_image_stack_net[:, :, :, :3], tgt_image_net], axis=3),
                        prefix='pose_'
                    )
                    res18_ctn, _ = net_builder.build_resnet18(
                        tf.concat([tgt_image_net, src_image_stack_net[:, :, :, 3:]], axis=3),
                        prefix='pose_'
                    )
                elif self.pose_type == 'shared':
                    res18_tp, _ = net_builder.build_resnet18(src_image_stack_net[:, :, :, :3])
                    res18_tn, _ = net_builder.build_resnet18(src_image_stack_net[:, :, :, 3:])
                    res18_ctp = tf.concat([res18_tc, res18_tp], axis=3)
                    res18_ctn = tf.concat([res18_tc, res18_tn], axis=3)
                else:
                    raise NotImplementedError

                pred_pose_ctp = net_builder.build_pose_net2(res18_ctp)
                pred_pose_ctn = net_builder.build_pose_net2(res18_ctn)

                pred_poses = tf.concat([pred_pose_ctp, pred_pose_ctn], axis=1)

                self.pred_poses = pred_poses 
开发者ID:FangGet,项目名称:tf-monodepth2,代码行数:56,代码来源:monodepth2_learner.py


注:本文中的model.net.Net方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。