当前位置: 首页>>代码示例>>Python>>正文


Python model.inference方法代码示例

本文整理汇总了Python中model.inference方法的典型用法代码示例。如果您正苦于以下问题:Python model.inference方法的具体用法?Python model.inference怎么用?Python model.inference使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在model的用法示例。


在下文中一共展示了model.inference方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: loadNetwork

# 需要导入模块: import model [as 别名]
# 或者: from model import inference [as 别名]
def loadNetwork(path, sess, model_name):
    img = tf.placeholder(dtype = tf.float32, shape = (None, None, None, 3))
    with tf.variable_scope(model_name):
        pred = inference(img, 68 if model_name=='my_model' else 17)

    saver = tf.train.Saver()
    sess.run(tf.global_variables_initializer())

    variables_to_restore = tf.global_variables()
    dic = {}
    for i in variables_to_restore:
        if 'global_step' not in i.name and 'Adam' not in i.name:
            dic[str(i.op.name).replace(model_name+'/', 'my_model/')] = i
    init_fn = assign_from_checkpoint_fn(os.path.join(path, 'snapshot'), dic, ignore_missing_vars = True)
    init_fn(sess)

    def func(imgs):
        output = sess.run(pred, feed_dict={img: imgs})
        return {
            'det': output[:,:,:,:17],
            'tag': output[:,:,:,-17:]
        }
    return func 
开发者ID:princeton-vl,项目名称:pose-ae-demo,代码行数:25,代码来源:main.py

示例2: evaluate

# 需要导入模块: import model [as 别名]
# 或者: from model import inference [as 别名]
def evaluate():
    """Eval MNIST for a number of steps."""
    with tf.Graph().as_default() as g:
        # Get images and labels for MNIST.
        mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=False)
        images = mnist.test.images
        labels = mnist.test.labels

        # Build a Graph that computes the logits predictions from the
        # inference model.
        logits = model.inference(images, keep_prob=1.0)

        # Calculate predictions.
        top_k_op = tf.nn.in_top_k(predictions=logits, targets=labels, k=1)

        # Create saver to restore the learned variables for eval.
        saver = tf.train.Saver()

        eval_once(saver, top_k_op) 
开发者ID:normanheckscher,项目名称:mnist-multi-gpu,代码行数:21,代码来源:mnist_multi_gpu_eval.py

示例3: tower_loss

# 需要导入模块: import model [as 别名]
# 或者: from model import inference [as 别名]
def tower_loss(scope):
    """Calculate the total loss on a single tower running the MNIST model.
  
    Args:
      scope: unique prefix string identifying the MNIST tower, e.g. 'tower_0'
  
    Returns:
       Tensor of shape [] containing the total loss for a batch of data
    """
    # Get images and labels for MSNIT.
    images, labels = model.inputs(FLAGS.batch_size)

    # Build inference Graph.
    logits = model.inference(images, keep_prob=0.5)

    # Build the portion of the Graph calculating the losses. Note that we will
    # assemble the total_loss using a custom function below.
    _ = model.loss(logits, labels)

    # Assemble all of the losses for the current tower only.
    losses = tf.get_collection('losses', scope)

    # Calculate the total loss for the current tower.
    total_loss = tf.add_n(losses, name='total_loss')

    # Attach a scalar summary to all individual losses and the total loss; do
    # the same for the averaged version of the losses.
    if (FLAGS.tb_logging):
        for l in losses + [total_loss]:
            # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU
            # training session. This helps the clarity of presentation on
            # tensorboard.
            loss_name = re.sub('%s_[0-9]*/' % model.TOWER_NAME, '', l.op.name)
            tf.summary.scalar(loss_name, l)

    return total_loss 
开发者ID:normanheckscher,项目名称:mnist-multi-gpu,代码行数:38,代码来源:mnist_multi_gpu_train.py

示例4: main

# 需要导入模块: import model [as 别名]
# 或者: from model import inference [as 别名]
def main(_):
    with tf.Graph().as_default():
        config = tf.ConfigProto()
        config.gpu_options.allocator_type = 'BFC'
        sess = tf.InteractiveSession(config=config)

        x_image = tf.placeholder(tf.float32, shape=[None, 66, 200, 3], name="x_image")
        y_label = tf.placeholder(tf.float32, shape=[None, 1], name="y_label")
        keep_prob = tf.placeholder(tf.float32, name="keep_prob")

        y_pred = model.inference(x_image, keep_prob)
        norm, losses, total_loss = loss(y_pred, y_label)
        train_op = train(total_loss)

        merged_summary_op = tf.summary.merge_all()
        summary_writer = tf.summary.FileWriter('train', sess.graph)
        saver = tf.train.Saver(write_version=tf.train.SaverDef.V2)
        if not os.path.exists(LOG_DIR):
            os.makedirs(LOG_DIR)
        checkpoint_path = os.path.join(LOG_DIR, "steering.ckpt")

        sess.run(tf.global_variables_initializer())

        udacity_data.read_data()

        for epoch in range(EPOCH):
            for i in range(STEP_PER_EPOCH):
                steps = epoch * STEP_PER_EPOCH + i

                xs, ys = udacity_data.load_train_batch(BATCH_SIZE)

                _, summary = sess.run([train_op, merged_summary_op],
                                      feed_dict={x_image: xs, y_label: ys, keep_prob: 0.7})

                if i % 10 == 0:
                    xs, ys = udacity_data.load_val_batch(BATCH_SIZE)
                    loss_value = losses.eval(feed_dict={x_image: xs, y_label: ys, keep_prob: 1.0})
                    print("Epoch: %d, Step: %d, Loss: %g" % (epoch, steps, loss_value))

                # write logs at every iteration
                summary_writer.add_summary(summary, steps)

                if i % 32 == 0:
                    if not os.path.exists(LOG_DIR):
                        os.makedirs(LOG_DIR)
                    saver.save(sess, checkpoint_path) 
开发者ID:mengli,项目名称:MachineLearning,代码行数:48,代码来源:train.py

示例5: evaluate_one_image

# 需要导入模块: import model [as 别名]
# 或者: from model import inference [as 别名]
def evaluate_one_image(image_array):
    with tf.Graph().as_default():
        BATCH_SIZE = 1
        N_CLASSES = 4

        image = tf.cast(image_array, tf.float32)
        image = tf.image.per_image_standardization(image)
        image = tf.reshape(image, [1, 64, 64, 3])

        logit = model.inference(image, BATCH_SIZE, N_CLASSES)

        logit = tf.nn.softmax(logit)

        x = tf.placeholder(tf.float32, shape=[64, 64, 3])

        # you need to change the directories to yours.
        logs_train_dir = 'C:/Users/74182/Desktop/flower_world-master/save'

        saver = tf.train.Saver()

        with tf.Session() as sess:

            print("Reading checkpoints...")
            ckpt = tf.train.get_checkpoint_state(logs_train_dir)
            if ckpt and ckpt.model_checkpoint_path:
                global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
                saver.restore(sess, ckpt.model_checkpoint_path)
                print('Loading success, global_step is %s' % global_step)
            else:
                print('No checkpoint file found')

            prediction = sess.run(logit, feed_dict={x: image_array})
            max_index = np.argmax(prediction)
            if max_index == 0:
                result = ('这是玫瑰花的可能性为: %.6f' % prediction[:, 0])
            elif max_index == 1:
                result = ('这是郁金香的可能性为: %.6f' % prediction[:, 1])
            elif max_index == 2:
                result = ('这是蒲公英的可能性为: %.6f' % prediction[:, 2])
            else:
                result = ('这是这是向日葵的可能性为: %.6f' % prediction[:, 3])
            return result


# ------------------------------------------------------------------------ 
开发者ID:chonepieceyb,项目名称:reading-frustum-pointnets-code,代码行数:47,代码来源:test.py

示例6: evaluate_one_image

# 需要导入模块: import model [as 别名]
# 或者: from model import inference [as 别名]
def evaluate_one_image(image_array):
    with tf.Graph().as_default():
        BATCH_SIZE = 1
        N_CLASSES = 4

        image = tf.cast(image_array, tf.float32)
        image = tf.image.per_image_standardization(image)
        image = tf.reshape(image, [1, 64, 64, 3])

        logit = model.inference(image, BATCH_SIZE, N_CLASSES)

        logit = tf.nn.softmax(logit)

        x = tf.placeholder(tf.float32, shape=[64, 64, 3])

        # you need to change the directories to yours.
        logs_train_dir = 'D:/ML/flower/save/'

        saver = tf.train.Saver()

        with tf.Session() as sess:

            print("Reading checkpoints...")
            ckpt = tf.train.get_checkpoint_state(logs_train_dir)
            if ckpt and ckpt.model_checkpoint_path:
                global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
                saver.restore(sess, ckpt.model_checkpoint_path)
                print('Loading success, global_step is %s' % global_step)
            else:
                print('No checkpoint file found')

            prediction = sess.run(logit, feed_dict={x: image_array})
            max_index = np.argmax(prediction)
            if max_index == 0:
                result = ('这是玫瑰花的可能性为: %.6f' % prediction[:, 0])
            elif max_index == 1:
                result = ('这是郁金香的可能性为: %.6f' % prediction[:, 1])
            elif max_index == 2:
                result = ('这是蒲公英的可能性为: %.6f' % prediction[:, 2])
            else:
                result = ('这是这是向日葵的可能性为: %.6f' % prediction[:, 3])
            return result


# ------------------------------------------------------------------------ 
开发者ID:waitingfordark,项目名称:four_flower,代码行数:47,代码来源:test.py

示例7: train

# 需要导入模块: import model [as 别名]
# 或者: from model import inference [as 别名]
def train():
    with tf.Graph().as_default():
        # global step number
        global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0), trainable=False)
        dataset = DataSet()

        # get training set
        print("The number of training images is: %d" % (dataset.cnt_samples(FLAGS.predictcsv)))
        csv_predict = FLAGS.predictcsv
        lines = dataset.load_csv(csv_predict)
        lines.sort()

        images_ph = tf.placeholder(tf.float32, [1, 229, 229, 3])

        num_classes = FLAGS.num_classes
        restore_logits = not FLAGS.fine_tune

        # inference
        logits = model.inference(images_ph, num_classes, for_training=False, restore_logits=restore_logits)


        # Retain the summaries from the final tower.
        batchnorm_updates = tf.get_collection(slim.ops.UPDATE_OPS_COLLECTION)

        # saver
        saver = tf.train.Saver(tf.all_variables())

        # Build the summary operation from the last tower summaries.
        summary_op = tf.merge_all_summaries()

        # initialization
        init = tf.initialize_all_variables()

        # session
        sess = tf.Session(config=tf.ConfigProto(
            allow_soft_placement=True,
            log_device_placement=FLAGS.log_device_placement))
        sess.run(init)

        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)

        ckpt = tf.train.get_checkpoint_state(FLAGS.train_dir)
        if ckpt and ckpt.model_checkpoint_path:
            print("load: checkpoint %s" % (ckpt.model_checkpoint_path))
            saver.restore(sess, ckpt.model_checkpoint_path)
        
        print("start to predict.")
        for step, line in enumerate(lines):
            pil_img = Image.open(line[0])
            pil_img = pil_img.resize((250, 250))
            img_array_r = np.asarray(pil_img)
            img_array_r = img_array_r[15:244,15:244,:]
            img_array = img_array_r[None, ...]
            softmax_eval = sess.run([logits[2]], feed_dict={images_ph: img_array})
            print("%s,%s,%s" % (line[0], line[1], np.argmax(softmax_eval)))
        print("finish to predict.")
        coord.request_stop()
        coord.join(threads)
        sess.close() 
开发者ID:MasazI,项目名称:InceptionV3_TensorFlow,代码行数:62,代码来源:predict.py


注:本文中的model.inference方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。