本文整理汇总了Python中model.eval方法的典型用法代码示例。如果您正苦于以下问题:Python model.eval方法的具体用法?Python model.eval怎么用?Python model.eval使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类model
的用法示例。
在下文中一共展示了model.eval方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: evaluate
# 需要导入模块: import model [as 别名]
# 或者: from model import eval [as 别名]
def evaluate(data_source, source_sampler, target_sampler, batch_size=10):
# Turn on evaluation mode which disables dropout.
model.eval()
if args.model == 'QRNN':
model.reset()
total_loss = 0
hidden = model.init_hidden(batch_size)
for source_sample, target_sample in zip(source_sampler, target_sampler):
model.train()
data = torch.stack([data_source[i] for i in source_sample])
targets = torch.stack([data_source[i] for i in target_sample]).view(-1)
with torch.no_grad():
output, hidden = model(data, hidden)
total_loss += len(data) * criterion(model.decoder.weight, model.decoder.bias, output,
targets).item()
hidden = repackage_hidden(hidden)
return total_loss / len(data_source)
示例2: evaluate
# 需要导入模块: import model [as 别名]
# 或者: from model import eval [as 别名]
def evaluate(data_source, batch_size=10):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(batch_size)
with torch.no_grad():
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, args)
targets = targets.view(-1)
log_prob, hidden = parallel_model(data, hidden)
loss = nn.functional.nll_loss(log_prob.view(-1, log_prob.size(2)), targets).data
total_loss += len(data) * loss
hidden = repackage_hidden(hidden)
return total_loss.item() / len(data_source)
示例3: evaluate
# 需要导入模块: import model [as 别名]
# 或者: from model import eval [as 别名]
def evaluate(data_source, batch_size=10):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(batch_size)
with torch.no_grad():
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, args)
targets = targets.view(-1)
log_prob, hidden = parallel_model(data, hidden)
loss = nn.functional.nll_loss(log_prob.view(-1, log_prob.size(2)), targets).data
total_loss += loss * len(data)
hidden = repackage_hidden(hidden)
return total_loss.item() / len(data_source)
示例4: dev
# 需要导入模块: import model [as 别名]
# 或者: from model import eval [as 别名]
def dev(i):
model.eval()
total_loss = 0
for chars, words, position, sub_sidx, sub_eidx, obj_sidx, obj_eidx, sub_slidx, sub_elidx in tqdm(validation_data, mininterval=1, desc='dev Processing', leave=False):
with torch.no_grad():
p_sub_sidx, p_sub_eidx, p_obj_sidx, p_obj_eidx, mask = model(
chars, words, position, sub_slidx, sub_elidx)
ss_loss = mask_binary_cross_entropy(p_sub_sidx, sub_sidx, mask)
se_loss = mask_binary_cross_entropy(p_sub_eidx, sub_eidx, mask)
os_loss = mask_binary_cross_entropy(p_obj_sidx, obj_sidx, mask)
oe_loss = mask_binary_cross_entropy(p_obj_eidx, obj_eidx, mask)
loss = ss_loss+se_loss+os_loss+oe_loss
total_loss += loss.data.item()
print(
f"dev epoch {i+1}/{args.epochs} loss: {total_loss/training_data.stop_step:.4f}")
示例5: test
# 需要导入模块: import model [as 别名]
# 或者: from model import eval [as 别名]
def test(i, predict):
model.eval()
t = pre = groud = 0
inf = open("data/dev_data.json", encoding="utf8")
for line in inf:
line = json.loads(line)
text = line["text"]
g_triples = set()
for trip in line["spo_list"]:
g_triples.add((trip["subject"], trip["predicate"], trip["object"]))
p_triples = predict.predict(text)
pre += len(p_triples)
groud += len(g_triples)
t += len(p_triples.intersection(g_triples))
print(
f"test epoch {i+1}/{args.epochs} precision: {t/(pre+0.001):.4f} recall: {t/groud:.4f} f1: {2*t/(pre+groud):.4f}")
return 2*t/(pre+groud)
示例6: evaluate
# 需要导入模块: import model [as 别名]
# 或者: from model import eval [as 别名]
def evaluate(data_source):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0.
ntokens = len(corpus.dictionary)
if args.model != 'Transformer':
hidden = model.init_hidden(eval_batch_size)
with torch.no_grad():
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i)
if args.model == 'Transformer':
output = model(data)
output = output.view(-1, ntokens)
else:
output, hidden = model(data, hidden)
hidden = repackage_hidden(hidden)
total_loss += len(data) * criterion(output, targets).item()
return total_loss / (len(data_source) - 1)
示例7: evaluate
# 需要导入模块: import model [as 别名]
# 或者: from model import eval [as 别名]
def evaluate(data_source, batch_size=10):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(batch_size)
for i in range(0, data_source.size(0) - 1, args.bptt):
print(i, data_source.size(0)-1)
data, targets = get_batch(data_source, i, args, evaluation=True)
targets = targets.view(-1)
log_prob, hidden = parallel_model(data, hidden)
loss = nn.functional.nll_loss(log_prob.view(-1, log_prob.size(2)), targets).data
total_loss += loss * len(data)
hidden = repackage_hidden(hidden)
return total_loss[0] / len(data_source)
# Load the best saved model.
示例8: evaluate
# 需要导入模块: import model [as 别名]
# 或者: from model import eval [as 别名]
def evaluate(data_source, batch_size=10):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(batch_size)
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, args, evaluation=True)
targets = targets.view(-1)
log_prob, hidden = parallel_model(data, hidden)
loss = nn.functional.nll_loss(log_prob.view(-1, log_prob.size(2)), targets).data
total_loss += loss * len(data)
hidden = repackage_hidden(hidden)
return total_loss[0] / len(data_source)
示例9: evaluate
# 需要导入模块: import model [as 别名]
# 或者: from model import eval [as 别名]
def evaluate(data_source, batch_size=10):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(batch_size)
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, args.bptt, evaluation=True)
targets = targets.view(-1)
log_prob, hidden = parallel_model(data, hidden)
loss = nn.functional.nll_loss(log_prob.view(-1, log_prob.size(2)), targets).data
total_loss += loss * len(data)
hidden = repackage_hidden(hidden)
return total_loss[0] / len(data_source)
示例10: evaluate
# 需要导入模块: import model [as 别名]
# 或者: from model import eval [as 别名]
def evaluate(data_source):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0.
ntokens = len(corpus.dictionary)
if args.model != 'Transformer':
hidden = model.init_hidden(eval_batch_size)
with torch.no_grad():
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i)
if args.model == 'Transformer':
output = model(data)
else:
output, hidden = model(data, hidden)
hidden = repackage_hidden(hidden)
output_flat = output.view(-1, ntokens)
total_loss += len(data) * criterion(output_flat, targets).item()
return total_loss / (len(data_source) - 1)
示例11: evaluate
# 需要导入模块: import model [as 别名]
# 或者: from model import eval [as 别名]
def evaluate(lm_data_source, ccg_data_source):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0
ntokens = len(corpus.dictionary)
if (not args.single) and (torch.cuda.device_count() > 1):
#"module" is necessary when using DataParallel
hidden = model.module.init_hidden(eval_batch_size)
else:
hidden = model.init_hidden(eval_batch_size)
for i in range(0, lm_data_source.size(0) + ccg_data_source.size(0) - 1, args.bptt):
# TAG
if i > lm_data_source.size(0):
data, targets = get_batch(ccg_data_source, i - lm_data_source.size(0), evaluation=True)
# LM
else:
data, targets = get_batch(lm_data_source, i, evaluation=True)
output, hidden = model(data, hidden)
output_flat = output.view(-1, ntokens)
curr_loss = len(data) * criterion(output_flat, targets).data
total_loss += curr_loss
hidden = repackage_hidden(hidden)
if len(ccg_data_source) == 0:
return total_loss / len(lm_data_source)
return total_loss[0] / (len(lm_data_source)+len(ccg_data_source))
示例12: evaluate
# 需要导入模块: import model [as 别名]
# 或者: from model import eval [as 别名]
def evaluate(data_source, batch_size=10):
# Turn on evaluation mode which disables dropout.
if args.model == 'QRNN': model.reset()
model.eval()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(batch_size)
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, args, evaluation=True)
output, hidden = model(data, hidden)
output_flat = output.view(-1, ntokens)
total_loss += len(data) * criterion(output_flat, targets).data
hidden = repackage_hidden(hidden)
return total_loss[0] / len(data_source)
示例13: evaluate
# 需要导入模块: import model [as 别名]
# 或者: from model import eval [as 别名]
def evaluate(data_source, batch_size=10):
# Turn on evaluation mode which disables dropout.
model.eval()
if args.model == 'QRNN': model.reset()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(batch_size)
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, args, evaluation=True)
output, hidden = model(data, hidden)
output_flat = output.view(-1, ntokens)
total_loss += len(data) * criterion(output_flat, targets).data
hidden = repackage_hidden(hidden)
return total_loss[0] / len(data_source)
示例14: evaluate
# 需要导入模块: import model [as 别名]
# 或者: from model import eval [as 别名]
def evaluate(data_source, batch_size, seq_len):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0
tokens = 0
n = 0
save_all_losses = []
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(batch_size)
for i in range(0, data_source.size(0) - 1, seq_len):
tokens += seq_len
data, targets = get_batch(data_source, i, args, evaluation=True, seq_len=seq_len)
output, hidden = model(data, hidden)
output = nn.functional.log_softmax(output.permute(2,1,0)).permute(2,1,0)
targets = targets.view(data.data.shape[0], batch_size, -1)
CELoss = torch.gather(output.data, dim=2, index=targets.data).squeeze()
CELoss = -1*CELoss
if tokens < args.start_token: continue # We are not ready to accumulate error yet
elif tokens >= args.start_token and tokens-seq_len < args.start_token:
data.data = data.data[-(tokens-args.start_token+1):]
CELoss = CELoss[-(tokens-args.start_token+1):]
print('First word: %s' % (corpus.dictionary.idx2word[data.data[-(tokens-args.start_token+1),0]]))
total_loss += torch.sum(CELoss)
n += data.size(0)
save_all_losses += CELoss.tolist()
hidden = repackage_hidden(hidden)
print('total: %d' % n)
print('Last word: %s' % (corpus.dictionary.idx2word[data.data[-1,0]]))
return total_loss / float(n), save_all_losses
示例15: evaluate
# 需要导入模块: import model [as 别名]
# 或者: from model import eval [as 别名]
def evaluate(data_source):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(eval_batch_size)
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, evaluation=True)
output, hidden = model(data, hidden)
output_flat = output.view(-1, ntokens)
total_loss += len(data) * criterion(output_flat, targets).data
hidden = repackage_hidden(hidden)
return total_loss[0] / len(data_source)