当前位置: 首页>>代码示例>>Python>>正文


Python model.create_model方法代码示例

本文整理汇总了Python中model.create_model方法的典型用法代码示例。如果您正苦于以下问题:Python model.create_model方法的具体用法?Python model.create_model怎么用?Python model.create_model使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在model的用法示例。


在下文中一共展示了model.create_model方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: import model [as 别名]
# 或者: from model import create_model [as 别名]
def main(opt):
  opt.heads['depth'] = opt.num_output
  if opt.load_model == '':
    opt.load_model = '../models/fusion_3d_var.pth'
  if opt.gpus[0] >= 0:
    opt.device = torch.device('cuda:{}'.format(opt.gpus[0]))
  else:
    opt.device = torch.device('cpu')
  
  model, _, _ = create_model(opt)
  model = model.to(opt.device)
  model.eval()

  if os.path.isdir(opt.demo):
    ls = os.listdir(opt.demo)
    for file_name in sorted(ls):
      if is_image(file_name):
        image_name = os.path.join(opt.demo, file_name)
        print('Running {} ...'.format(image_name))
        image = cv2.imread(image_name)
        demo_image(image, model, opt)
  elif is_image(opt.demo):
    print('Running {} ...'.format(opt.demo))
    image = cv2.imread(opt.demo)
    demo_image(image, model, opt) 
开发者ID:xingyizhou,项目名称:pytorch-pose-hg-3d,代码行数:27,代码来源:demo.py

示例2: main

# 需要导入模块: import model [as 别名]
# 或者: from model import create_model [as 别名]
def main(_):
  model, argv = model_lib.create_model()
  run(model, argv) 
开发者ID:GoogleCloudPlatform,项目名称:cloudml-edge-automation,代码行数:5,代码来源:task.py

示例3: init_train_setting

# 需要导入模块: import model [as 别名]
# 或者: from model import create_model [as 别名]
def init_train_setting(self):
        self.train_dataset = create_dataloader(self.opt)
        self.train_model = create_model(self.opt)

        self.train_total_steps = 0
        self.epoch_len = self.opt.niter + self.opt.niter_decay
        self.cur_lr = self.opt.lr 
开发者ID:donydchen,项目名称:ganimation_replicate,代码行数:9,代码来源:solvers.py

示例4: init_test_setting

# 需要导入模块: import model [as 别名]
# 或者: from model import create_model [as 别名]
def init_test_setting(self, opt):
        self.test_dataset = create_dataloader(opt)
        self.test_model = create_model(opt) 
开发者ID:donydchen,项目名称:ganimation_replicate,代码行数:5,代码来源:solvers.py

示例5: load_model_from_weights

# 需要导入模块: import model [as 别名]
# 或者: from model import create_model [as 别名]
def load_model_from_weights(modelpath, modeltype, datvocabsize, comvocabsize, smlvocabsize, datlen, comlen, smllen):
    config = dict()
    config['datvocabsize'] = datvocabsize
    config['comvocabsize'] = comvocabsize
    config['datlen'] = datlen # length of the data
    config['comlen'] = comlen # comlen sent us in workunits
    config['smlvocabsize'] = smlvocabsize
    config['smllen'] = smllen

    model = create_model(modeltype, config)
    model.load_weights(modelpath)
    return model 
开发者ID:mcmillco,项目名称:funcom,代码行数:14,代码来源:predict.py

示例6: predict

# 需要导入模块: import model [as 别名]
# 或者: from model import create_model [as 别名]
def predict(image_name,
            data_dir="/home/shagun/projects/Image-Caption-Generator/data/",
            weights_path=None,
            mode="test"):
    '''Method to predict the caption for a given image.
    weights_path is the path to the .h5 file (model)'''

    image_path = data_dir + "images/" + image_name
    vgg_model = load_vgg16()
    vgg_embedding = vgg_model.predict(
        load_image(image_path)
    )
    image_embeddings = [vgg_embedding]

    config_dict = generate_config(data_dir=data_dir,
                                  mode=mode)
    print(config_dict)

    model = create_model(config_dict=config_dict,
                         compile_model=False)

    model.load_weights(data_dir + "model/" + weights_path)

    tokenizer = get_tokenizer(config_dict=config_dict,
                              data_dir=data_dir)

    index_to_word = {v: k for k, v in tokenizer.word_index.items()}

    for image_embedding in image_embeddings:
        gen_captions(config=config_dict,
                     model=model,
                     image_embedding=image_embedding,
                     tokenizer=tokenizer,
                     num_captions=2,
                     index_to_word=index_to_word
                     ) 
开发者ID:shagunsodhani,项目名称:Image-Caption-Generator,代码行数:38,代码来源:test.py

示例7: train_and_evaluate

# 需要导入模块: import model [as 别名]
# 或者: from model import create_model [as 别名]
def train_and_evaluate(args):
  model = model_lib.create_model(args)
  env = json.loads(os.environ.get('TF_CONFIG', '{}'))

  # Print the job data as provided by the service.
  logging.info('Original job data: %s', env.get('job', {}))

  # First find out if there's a task value on the environment variable.
  # If there is none or it is empty define a default one.
  task_data = env.get('task', None) or {'type': 'master', 'index': 0}
  task = type('TaskSpec', (object,), task_data)
  trial = task_data.get('trial')
  if trial is not None:
    args.output_path = os.path.join(args.output_path, trial)
  if args.write_to_tmp and args.output_path.startswith('gs://'):
    output_path = args.output_path
    args.output_path = os.path.join('/tmp/', str(uuid.uuid4()))
    os.makedirs(args.output_path)
  else:
    output_path = None

  if args.copy_train_data_to_tmp:
    args.train_data_paths = copy_data_to_tmp(args.train_data_paths)
  if args.copy_eval_data_to_tmp:
    args.eval_data_paths = copy_data_to_tmp(args.eval_data_paths)

  if not args.eval_batch_size:
    # If eval_batch_size not set, use min of batch_size and eval_set_size
    args.eval_batch_size = min(args.batch_size, args.eval_set_size)
    logging.info("setting eval batch size to %s", args.eval_batch_size)

  cluster_data = env.get('cluster', None)
  cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else None
  if args.write_predictions:
    write_predictions(args, model, cluster, task)
  else:
    dispatch(args, model, cluster, task)

  if output_path and (not cluster or not task or task.type == 'master'):
    subprocess.check_call([
        'gsutil', '-m', '-q', 'cp', '-r', args.output_path + '/*', output_path
    ])
    shutil.rmtree(args.output_path, ignore_errors=True) 
开发者ID:GoogleCloudPlatform,项目名称:cloudml-samples,代码行数:45,代码来源:task.py

示例8: main

# 需要导入模块: import model [as 别名]
# 或者: from model import create_model [as 别名]
def main(sample_str=None):
    """Predict a title for a recipe."""
    # load model parameters used for training
    with open(path.join(path_models, 'model_params.json'), 'r') as f:
        model_params = json.load(f)

    # create placeholder model
    model = create_model(**model_params)

    # load weights from training run
    load_weights(model, path.join(path_models, '{}.hdf5'.format(FN1)))

    # load recipe titles and descriptions
    with open(path.join(path_data, 'vocabulary-embedding.data.pkl'), 'rb') as fp:
        X_data, Y_data = pickle.load(fp)

    # load vocabulary
    with open(path.join(path_data, '{}.pkl'.format(FN0)), 'rb') as fp:
        embedding, idx2word, word2idx, glove_idx2idx = pickle.load(fp)
    vocab_size, embedding_size = embedding.shape
    oov0 = vocab_size - nb_unknown_words

    if sample_str is None:
        # load random recipe description if none provided
        i = np.random.randint(len(X_data))
        sample_str = ''
        sample_title = ''
        for w in X_data[i]:
            sample_str += idx2word[w] + ' '
        for w in Y_data[i]:
            sample_title += idx2word[w] + ' '
        y = Y_data[i]
        print('Randomly sampled recipe:')
        print(sample_title)
        print(sample_str)
    else:
        sample_title = ''
        y = [eos]

    x = [word2idx[w.rstrip('^')] for w in sample_str.split()]

    samples = gensamples(
        skips=2,
        k=1,
        batch_size=2,
        short=False,
        temperature=1.,
        use_unk=True,
        model=model,
        data=(x, y),
        idx2word=idx2word,
        oov0=oov0,
        glove_idx2idx=glove_idx2idx,
        vocab_size=vocab_size,
        nb_unknown_words=nb_unknown_words,
    )

    headline = samples[0][0][len(samples[0][1]):]
    ' '.join(idx2word[w] for w in headline) 
开发者ID:rtlee9,项目名称:recipe-summarization,代码行数:61,代码来源:predict.py

示例9: train

# 需要导入模块: import model [as 别名]
# 或者: from model import create_model [as 别名]
def train(batch_size=128,
          epochs=100,
          data_dir="/home/shagun/projects/Image-Caption-Generator/data/",
          weights_path=None,
          mode="train"):
    '''Method to train the image caption generator
    weights_path is the path to the .h5 file where weights from the previous
    run are saved (if available)'''

    config_dict = generate_config(data_dir=data_dir,
                                  mode=mode)
    config_dict['batch_size'] = batch_size
    steps_per_epoch = config_dict["total_number_of_examples"] // batch_size

    print("steps_per_epoch = ", steps_per_epoch)
    train_data_generator = debug_generator(config_dict=config_dict,
                                           data_dir=data_dir)

    model = create_model(config_dict=config_dict)

    if weights_path:
        model.load_weights(weights_path)

    file_name = data_dir + "model/weights-{epoch:02d}.hdf5"
    checkpoint = ModelCheckpoint(filepath=file_name,
                                 monitor='loss',
                                 verbose=1,
                                 save_best_only=True,
                                 mode='min')
    tensorboard = TensorBoard(log_dir='../logs',
                              histogram_freq=0,
                              batch_size=batch_size,
                              write_graph=True,
                              write_grads=True,
                              write_images=False,
                              embeddings_freq=0,
                              embeddings_layer_names=None,
                              embeddings_metadata=None)

    callbacks_list = [checkpoint, tensorboard]
    model.fit_generator(
        generator=train_data_generator,
        steps_per_epoch=steps_per_epoch,
        epochs=epochs,
        verbose=2,
        callbacks=callbacks_list) 
开发者ID:shagunsodhani,项目名称:Image-Caption-Generator,代码行数:48,代码来源:train.py


注:本文中的model.create_model方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。