本文整理汇总了Python中model.config.cfg方法的典型用法代码示例。如果您正苦于以下问题:Python config.cfg方法的具体用法?Python config.cfg怎么用?Python config.cfg使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类model.config
的用法示例。
在下文中一共展示了config.cfg方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: proposal_layer
# 需要导入模块: from model import config [as 别名]
# 或者: from model.config import cfg [as 别名]
def proposal_layer(rpn_cls_prob, rpn_bbox_pred, im_info, cfg_key, _feat_stride, anchors, num_anchors):
"""A simplified version compared to fast/er RCNN
For details please see the technical report
"""
if type(cfg_key) == bytes:
cfg_key = cfg_key.decode('utf-8')
pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N
post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N
nms_thresh = cfg[cfg_key].RPN_NMS_THRESH
# Get the scores and bounding boxes
scores = rpn_cls_prob[:, :, :, num_anchors:]
rpn_bbox_pred = rpn_bbox_pred.view((-1, 4))
scores = scores.contiguous().view(-1, 1)
proposals = bbox_transform_inv(anchors, rpn_bbox_pred)
proposals = clip_boxes(proposals, im_info[:2])
# Pick the top region proposals
scores, order = scores.view(-1).sort(descending=True)
if pre_nms_topN > 0:
order = order[:pre_nms_topN]
scores = scores[:pre_nms_topN].view(-1, 1)
proposals = proposals[order.data, :]
# Non-maximal suppression
keep = nms(torch.cat((proposals, scores), 1).data, nms_thresh)
# Pick th top region proposals after NMS
if post_nms_topN > 0:
keep = keep[:post_nms_topN]
proposals = proposals[keep, :]
scores = scores[keep,]
# Only support single image as input
batch_inds = Variable(proposals.data.new(proposals.size(0), 1).zero_())
blob = torch.cat((batch_inds, proposals), 1)
return blob, scores
开发者ID:Sunarker,项目名称:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代码行数:40,代码来源:proposal_layer.py
示例2: parse_args
# 需要导入模块: from model import config [as 别名]
# 或者: from model.config import cfg [as 别名]
def parse_args():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(description='Test a Fast R-CNN network')
parser.add_argument('--cfg', dest='cfg_file',
help='optional config file', default=None, type=str)
parser.add_argument('--model', dest='model',
help='model to test',
default=None, type=str)
parser.add_argument('--imdb', dest='imdb_name',
help='dataset to test',
default='voc_2007_test', type=str)
parser.add_argument('--comp', dest='comp_mode', help='competition mode',
action='store_true')
parser.add_argument('--num_dets', dest='max_per_image',
help='max number of detections per image',
default=100, type=int)
parser.add_argument('--tag', dest='tag',
help='tag of the model',
default='', type=str)
parser.add_argument('--net', dest='net',
help='vgg16, res50, res101, res152, mobile',
default='res50', type=str)
parser.add_argument('--set', dest='set_cfgs',
help='set config keys', default=None,
nargs=argparse.REMAINDER)
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
args = parser.parse_args()
return args
开发者ID:Sunarker,项目名称:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代码行数:36,代码来源:test_net.py
示例3: proposal_layer_tf
# 需要导入模块: from model import config [as 别名]
# 或者: from model.config import cfg [as 别名]
def proposal_layer_tf(rpn_cls_prob, rpn_bbox_pred, im_info, cfg_key, _feat_stride, anchors, num_anchors):
if type(cfg_key) == bytes:
cfg_key = cfg_key.decode('utf-8')
pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N
post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N
nms_thresh = cfg[cfg_key].RPN_NMS_THRESH
min_size = cfg[cfg_key].ANCHOR_MIN_SIZE
# Get the scores and bounding boxes
scores = rpn_cls_prob[:, :, :, num_anchors:]
scores = tf.reshape(scores, shape=(-1,))
rpn_bbox_pred = tf.reshape(rpn_bbox_pred, shape=(-1, 4))
proposals = bbox_transform_inv_tf(anchors, rpn_bbox_pred)
proposals = clip_boxes_tf(proposals, im_info[:2])
# removed predicted boxes with either height or width < threshold
# (NOTE: convert min_size to input image scale stored in im_info[2])
# keep = _filter_boxes_tf(proposals, min_size * im_info[2])
# proposals = tf.gather(proposals, keep)
# scores = tf.gather(scores, keep)
# Non-maximal suppression
indices = tf.image.non_max_suppression(proposals, scores, max_output_size=post_nms_topN, iou_threshold=nms_thresh)
boxes = tf.gather(proposals, indices)
boxes = tf.to_float(boxes)
scores = tf.gather(scores, indices)
scores = tf.reshape(scores, shape=(-1, 1))
# Only support single image as input
batch_inds = tf.zeros((tf.shape(indices)[0], 1), dtype=tf.float32)
blob = tf.concat([batch_inds, boxes], 1)
return blob, scores
示例4: proposal_layer
# 需要导入模块: from model import config [as 别名]
# 或者: from model.config import cfg [as 别名]
def proposal_layer(rpn_cls_prob, rpn_bbox_pred, im_info, cfg_key, _feat_stride, anchors, num_anchors):
"""A simplified version compared to fast/er RCNN
For details please see the technical report
"""
if type(cfg_key) == bytes:
cfg_key = cfg_key.decode('utf-8')
pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N
post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N
nms_thresh = cfg[cfg_key].RPN_NMS_THRESH
im_info = im_info[0]
# Get the scores and bounding boxes
scores = rpn_cls_prob[:, :, :, num_anchors:]
rpn_bbox_pred = rpn_bbox_pred.reshape((-1, 4))
scores = scores.reshape((-1, 1))
proposals = bbox_transform_inv(anchors, rpn_bbox_pred)
proposals = clip_boxes(proposals, im_info[:2])
# Pick the top region proposals
order = scores.ravel().argsort()[::-1]
if pre_nms_topN > 0:
order = order[:pre_nms_topN]
proposals = proposals[order, :]
scores = scores[order]
# Non-maximal suppression
keep = nms(np.hstack((proposals, scores)), nms_thresh)
# Pick th top region proposals after NMS
if post_nms_topN > 0:
keep = keep[:post_nms_topN]
proposals = proposals[keep, :]
scores = scores[keep]
# Only support single image as input
batch_inds = np.zeros((proposals.shape[0], 1), dtype=np.float32)
blob = np.hstack((batch_inds, proposals.astype(np.float32, copy=False)))
return blob, scores
示例5: proposal_layer
# 需要导入模块: from model import config [as 别名]
# 或者: from model.config import cfg [as 别名]
def proposal_layer(rpn_cls_prob, rpn_bbox_pred, im_info, cfg_key, _feat_stride, anchors, num_anchors):
"""A simplified version compared to fast/er RCNN
For details please see the technical report
"""
if type(cfg_key) == bytes:
cfg_key = cfg_key.decode('utf-8')
pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N
post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N
nms_thresh = cfg[cfg_key].RPN_NMS_THRESH
# Get the scores and bounding boxes
scores = rpn_cls_prob[:, :, :, num_anchors:]
rpn_bbox_pred = rpn_bbox_pred.reshape((-1, 4))
scores = scores.reshape((-1, 1))
proposals = bbox_transform_inv(anchors, rpn_bbox_pred)
proposals = clip_boxes(proposals, im_info[:2])
# Pick the top region proposals
order = scores.ravel().argsort()[::-1]
if pre_nms_topN > 0:
order = order[:pre_nms_topN]
proposals = proposals[order, :]
scores = scores[order]
# Non-maximal suppression
keep = nms(np.hstack((proposals, scores)), nms_thresh)
# Pick th top region proposals after NMS
if post_nms_topN > 0:
keep = keep[:post_nms_topN]
proposals = proposals[keep, :]
scores = scores[keep]
# Only support single image as input
batch_inds = np.zeros((proposals.shape[0], 1), dtype=np.float32)
blob = np.hstack((batch_inds, proposals.astype(np.float32, copy=False)))
return blob, scores
示例6: proposal_layer_tf
# 需要导入模块: from model import config [as 别名]
# 或者: from model.config import cfg [as 别名]
def proposal_layer_tf(rpn_cls_prob, rpn_bbox_pred, im_info, cfg_key, _feat_stride, anchors, num_anchors):
if type(cfg_key) == bytes:
cfg_key = cfg_key.decode('utf-8')
pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N
post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N
nms_thresh = cfg[cfg_key].RPN_NMS_THRESH
# Get the scores and bounding boxes
scores = rpn_cls_prob[:, :, :, num_anchors:]
scores = tf.reshape(scores, shape=(-1,))
rpn_bbox_pred = tf.reshape(rpn_bbox_pred, shape=(-1, 4))
proposals = bbox_transform_inv_tf(anchors, rpn_bbox_pred)
proposals = clip_boxes_tf(proposals, im_info[:2])
# Non-maximal suppression
indices = tf.image.non_max_suppression(proposals, scores, max_output_size=post_nms_topN, iou_threshold=nms_thresh)
boxes = tf.gather(proposals, indices)
boxes = tf.to_float(boxes)
scores = tf.gather(scores, indices)
scores = tf.reshape(scores, shape=(-1, 1))
# Only support single image as input
batch_inds = tf.zeros((tf.shape(indices)[0], 1), dtype=tf.float32)
blob = tf.concat([batch_inds, boxes], 1)
return blob, scores
示例7: proposal_layer
# 需要导入模块: from model import config [as 别名]
# 或者: from model.config import cfg [as 别名]
def proposal_layer(rpn_cls_prob, rpn_bbox_pred, im_info, cfg_key, _feat_stride, anchors, num_anchors):
"""A simplified version compared to fast/er RCNN
For details please see the technical report
"""
if type(cfg_key) == bytes:
cfg_key = cfg_key.decode('utf-8')
pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N
post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N
nms_thresh = cfg[cfg_key].RPN_NMS_THRESH
# Get the scores and bounding boxes
scores = rpn_cls_prob[:, :, :, num_anchors:]
rpn_bbox_pred = rpn_bbox_pred.view((-1, 4))
scores = scores.contiguous().view(-1, 1)
proposals = bbox_transform_inv(anchors, rpn_bbox_pred)
proposals = clip_boxes(proposals, im_info[:2])
# Pick the top region proposals
scores, order = scores.view(-1).sort(descending=True)
if pre_nms_topN > 0:
order = order[:pre_nms_topN]
scores = scores[:pre_nms_topN].view(-1, 1)
proposals = proposals[order.data, :]
# Non-maximal suppression
keep = nms(torch.cat((proposals, scores), 1).data, nms_thresh)
# Pick th top region proposals after NMS
if post_nms_topN > 0:
keep = keep[:post_nms_topN]
proposals = proposals[keep, :] # test(300,4)
scores = scores[keep,]
# Our RPN implementation only supports a single input image,
# so all batch inds are 0
# 即这些roi都属于一个图片,如果后续实现了多个输入图片,这个roi要区分它属于哪一个图片(即哪一个batch)
batch_inds = Variable(proposals.data.new(proposals.size(0), 1).zero_())
blob = torch.cat((batch_inds, proposals), 1)
return blob, scores
示例8: proposal_layer_fpn
# 需要导入模块: from model import config [as 别名]
# 或者: from model.config import cfg [as 别名]
def proposal_layer_fpn(rpn_cls_prob, rpn_bbox_pred, im_info, cfg_key, _feat_stride, anchors, num_anchors):
"""A simplified version compared to fast/er RCNN
For details please see the technical report
"""
if type(cfg_key) == bytes:
cfg_key = cfg_key.decode('utf-8')
pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N
post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N
nms_thresh = cfg[cfg_key].RPN_NMS_THRESH
proposals_total = []
scores_total = []
for idx in range(len(rpn_cls_prob)):
# Get the scores and bounding boxes
scores = rpn_cls_prob[idx][:, :, :, num_anchors:]
rpn_bbox_pred[idx] = rpn_bbox_pred[idx].view((-1, 4))
scores = scores.contiguous().view(-1, 1)
proposals = bbox_transform_inv(anchors[idx], rpn_bbox_pred[idx])
proposals = clip_boxes(proposals, im_info[:2])
# Pick the top region proposals
scores, order = scores.view(-1).sort(descending=True)
if pre_nms_topN > 0:
order = order[:pre_nms_topN]
scores = scores[:pre_nms_topN].view(-1, 1)
proposals = proposals[order.data, :]
proposals_total.append(proposals)
scores_total.append(scores)
proposals = torch.cat(proposals_total)
scores = torch.cat(scores_total)
# Non-maximal suppression
keep = nms(torch.cat((proposals, scores), 1).data, nms_thresh)
# Pick th top region proposals after NMS
if post_nms_topN > 0:
keep = keep[:post_nms_topN]
proposals = proposals[keep, :]
scores = scores[keep,]
# Only support single image as input
batch_inds = Variable(proposals.data.new(proposals.size(0), 1).zero_())
blob = torch.cat((batch_inds, proposals), 1)
return blob, scores
示例9: proposal_layer
# 需要导入模块: from model import config [as 别名]
# 或者: from model.config import cfg [as 别名]
def proposal_layer(rpn_cls_prob, rpn_bbox_pred, im_info, cfg_key, _feat_stride, anchors, num_anchors):
"""A simplified version compared to fast/er RCNN
For details please see the technical report
"""
if type(cfg_key) == bytes:
cfg_key = cfg_key.decode('utf-8')
pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N
post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N
nms_thresh = cfg[cfg_key].RPN_NMS_THRESH
min_size = cfg[cfg_key].ANCHOR_MIN_SIZE
# Get the scores and bounding boxes
scores = rpn_cls_prob[:, :, :, num_anchors:]
rpn_bbox_pred = rpn_bbox_pred.reshape((-1, 4))
scores = scores.reshape((-1, 1))
proposals = bbox_transform_inv(anchors, rpn_bbox_pred)
proposals = clip_boxes(proposals, im_info[:2])
# removed predicted boxes with either height or width < threshold
# (NOTE: convert min_size to input image scale stored in im_info[2])
# keep = _filter_boxes(proposals, min_size * im_info[2])
# proposals = proposals[keep, :]
# scores = scores[keep]
# Pick the top region proposals
order = scores.ravel().argsort()[::-1]
if pre_nms_topN > 0:
order = order[:pre_nms_topN]
proposals = proposals[order, :]
scores = scores[order]
# Non-maximal suppression
keep = nms(np.hstack((proposals, scores)), nms_thresh)
# Pick th top region proposals after NMS
if post_nms_topN > 0:
keep = keep[:post_nms_topN]
proposals = proposals[keep, :]
scores = scores[keep]
# Only support single image as input
batch_inds = np.zeros((proposals.shape[0], 1), dtype=np.float32)
blob = np.hstack((batch_inds, proposals.astype(np.float32, copy=False)))
return blob, scores