本文整理汇总了Python中model.common.default_conv方法的典型用法代码示例。如果您正苦于以下问题:Python common.default_conv方法的具体用法?Python common.default_conv怎么用?Python common.default_conv使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类model.common
的用法示例。
在下文中一共展示了common.default_conv方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from model import common [as 别名]
# 或者: from model.common import default_conv [as 别名]
def __init__(self, args, conv=common.default_conv):
super(VDSR, self).__init__()
n_resblocks = args.n_resblocks
n_feats = args.n_feats
kernel_size = 3
self.url = url['r{}f{}'.format(n_resblocks, n_feats)]
self.sub_mean = common.MeanShift(args.rgb_range)
self.add_mean = common.MeanShift(args.rgb_range, sign=1)
def basic_block(in_channels, out_channels, act):
return common.BasicBlock(
conv, in_channels, out_channels, kernel_size,
bias=True, bn=False, act=act
)
# define body module
m_body = []
m_body.append(basic_block(args.n_colors, n_feats, nn.ReLU(True)))
for _ in range(n_resblocks - 2):
m_body.append(basic_block(n_feats, n_feats, nn.ReLU(True)))
m_body.append(basic_block(n_feats, args.n_colors, None))
self.body = nn.Sequential(*m_body)
示例2: __init__
# 需要导入模块: from model import common [as 别名]
# 或者: from model.common import default_conv [as 别名]
def __init__(self, args, conv=common.default_conv):
super(MDSR, self).__init__()
n_resblocks = args.n_resblocks
n_feats = args.n_feats
kernel_size = 3
act = nn.ReLU(True)
self.scale_idx = 0
self.url = url['r{}f{}'.format(n_resblocks, n_feats)]
self.sub_mean = common.MeanShift(args.rgb_range)
self.add_mean = common.MeanShift(args.rgb_range, sign=1)
m_head = [conv(args.n_colors, n_feats, kernel_size)]
self.pre_process = nn.ModuleList([
nn.Sequential(
common.ResBlock(conv, n_feats, 5, act=act),
common.ResBlock(conv, n_feats, 5, act=act)
) for _ in args.scale
])
m_body = [
common.ResBlock(
conv, n_feats, kernel_size, act=act
) for _ in range(n_resblocks)
]
m_body.append(conv(n_feats, n_feats, kernel_size))
self.upsample = nn.ModuleList([
common.Upsampler(conv, s, n_feats, act=False) for s in args.scale
])
m_tail = [conv(n_feats, args.n_colors, kernel_size)]
self.head = nn.Sequential(*m_head)
self.body = nn.Sequential(*m_body)
self.tail = nn.Sequential(*m_tail)
示例3: __init__
# 需要导入模块: from model import common [as 别名]
# 或者: from model.common import default_conv [as 别名]
def __init__(self, args, conv=common.default_conv):
super(EDSR, self).__init__()
n_resblocks = args.n_resblocks
n_feats = args.n_feats
kernel_size = 3
scale = args.scale[0]
act = nn.ReLU(True)
self.sub_mean = common.MeanShift(args.rgb_range)
self.add_mean = common.MeanShift(args.rgb_range, sign=1)
# define head module
m_head = [conv(args.n_colors, n_feats, kernel_size)]
# define body module
m_body = [
common.ResBlock(
conv, n_feats, kernel_size, act=act, res_scale=args.res_scale
) for _ in range(n_resblocks)
]
m_body.append(conv(n_feats, n_feats, kernel_size))
# define tail module
m_tail = [
common.Upsampler(conv, scale, n_feats, act=False),
conv(n_feats, args.n_colors, kernel_size)
]
self.head = nn.Sequential(*m_head)
self.body = nn.Sequential(*m_body)
self.tail = nn.Sequential(*m_tail)
示例4: __init__
# 需要导入模块: from model import common [as 别名]
# 或者: from model.common import default_conv [as 别名]
def __init__(self, args, conv=common.default_conv):
super(RCAN, self).__init__()
n_resgroups = args.n_resgroups
n_resblocks = args.n_resblocks
n_feats = args.n_feats
kernel_size = 3
reduction = args.reduction
scale = args.scale[0]
act = nn.ReLU(True)
# RGB mean for DIV2K
self.sub_mean = common.MeanShift(args.rgb_range)
# define head module
modules_head = [conv(args.n_colors, n_feats, kernel_size)]
# define body module
modules_body = [
ResidualGroup(
conv, n_feats, kernel_size, reduction, act=act, res_scale=args.res_scale, n_resblocks=n_resblocks) \
for _ in range(n_resgroups)]
modules_body.append(conv(n_feats, n_feats, kernel_size))
# define tail module
modules_tail = [
common.Upsampler(conv, scale, n_feats, act=False),
conv(n_feats, args.n_colors, kernel_size)]
self.add_mean = common.MeanShift(args.rgb_range, sign=1)
self.head = nn.Sequential(*modules_head)
self.body = nn.Sequential(*modules_body)
self.tail = nn.Sequential(*modules_tail)
示例5: __init__
# 需要导入模块: from model import common [as 别名]
# 或者: from model.common import default_conv [as 别名]
def __init__(self, args, conv=common.default_conv):
super(EDSR, self).__init__()
n_resblocks = args.n_resblocks
n_feats = args.n_feats
kernel_size = 3
scale = args.scale[0]
act = nn.ReLU(True)
# self.url = url['r{}f{}x{}'.format(n_resblocks, n_feats, scale)]
self.sub_mean = common.MeanShift(args.rgb_range)
self.add_mean = common.MeanShift(args.rgb_range, sign=1)
# define head module
m_head = [conv(args.n_colors, n_feats, kernel_size)]
# define body module
m_body = [
common.ResBlock(
conv, n_feats, kernel_size, act=act, res_scale=args.res_scale
) for _ in range(n_resblocks)
]
m_body.append(conv(n_feats, n_feats, kernel_size))
# define tail module
m_tail = [
common.Upsampler(conv, scale, n_feats, act=False),
conv(n_feats, args.n_colors, kernel_size)
]
self.head = nn.Sequential(*m_head)
self.body = nn.Sequential(*m_body)
self.tail = nn.Sequential(*m_tail)
示例6: __init__
# 需要导入模块: from model import common [as 别名]
# 或者: from model.common import default_conv [as 别名]
def __init__(self, n_resblock=24, n_feats=256, scale=2, bias=True, norm_type=False,
act_type='prelu'):
super(NET, self).__init__()
self.scale = scale
m = [common.default_conv(1, n_feats, 3, stride=2)]
m += [nn.PixelShuffle(2),
common.ConvBlock(n_feats//4, n_feats, bias=True, act_type=act_type)
]
m += [common.ResBlock(n_feats, 3, norm_type, act_type, res_scale=1, bias=bias)
for _ in range(n_resblock)]
for _ in range(int(math.log(scale, 2))):
m += [nn.PixelShuffle(2),
common.ConvBlock(n_feats//4, n_feats, bias=True, act_type=act_type)
]
m += [common.default_conv(n_feats, 3, 3)]
self.model = nn.Sequential(*m)
for m in self.modules():
# pdb.set_trace()
if isinstance(m, nn.Conv2d):
# Xavier
# nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
nn.init.xavier_normal_(m.weight)
m.weight.requires_grad = True
if m.bias is not None:
m.bias.data.zero_()
m.bias.requires_grad = True
示例7: __init__
# 需要导入模块: from model import common [as 别名]
# 或者: from model.common import default_conv [as 别名]
def __init__(self, args, conv=common.default_conv):
super(EDSR, self).__init__()
n_resblocks = args.n_resblocks
n_feats = args.n_feats
kernel_size = 3
scale = args.scale[0]
act = nn.ReLU(True)
url_name = 'r{}f{}x{}'.format(n_resblocks, n_feats, scale)
if url_name in url:
self.url = url[url_name]
else:
self.url = None
self.sub_mean = common.MeanShift(args.rgb_range)
self.add_mean = common.MeanShift(args.rgb_range, sign=1)
# define head module
m_head = [conv(args.n_colors, n_feats, kernel_size)]
# define body module
m_body = [
common.ResBlock(
conv, n_feats, kernel_size, act=act, res_scale=args.res_scale
) for _ in range(n_resblocks)
]
m_body.append(conv(n_feats, n_feats, kernel_size))
# define tail module
m_tail = [
common.Upsampler(conv, scale, n_feats, act=False),
conv(n_feats, args.n_colors, kernel_size)
]
self.head = nn.Sequential(*m_head)
self.body = nn.Sequential(*m_body)
self.tail = nn.Sequential(*m_tail)
示例8: __init__
# 需要导入模块: from model import common [as 别名]
# 或者: from model.common import default_conv [as 别名]
def __init__(self, args, conv=common.default_conv):
super(NHR_Res32, self).__init__()
n_resblocks = args.n_resblocks
args.n_resblocks = args.n_resblocks - args.n_resblocks_ft
n_feats = args.n_feats
kernel_size = 3
scale = args.scale[0]
act = nn.ReLU(True)
tail_ft2 = [
common.ResBlock(
conv, n_feats+4, kernel_size, act=act, res_scale=args.res_scale
) for _ in range(args.n_resblocks_ft)
]
tail_ft2.append(conv(n_feats+4, args.n_colors, kernel_size))
tail_ft1 = [
common.Upsampler(conv, scale, n_feats, act=False),
]
premodel = EDSR(args)
self.sub_mean = premodel.sub_mean
self.head = premodel.head
body = premodel.body
body_child = list(body.children())
body_ft = [body_child.pop()]
self.body = nn.Sequential(*body_child)
self.body_ft = nn.Sequential(*body_ft)
self.tail_ft1 = nn.Sequential(*tail_ft1)
self.tail_ft2 = nn.Sequential(*tail_ft2)
self.add_mean = premodel.add_mean
args.n_resblocks = n_resblocks
# self.premodel = EDSR(args)
# from IPython import embed; embed(); exit()
示例9: __init__
# 需要导入模块: from model import common [as 别名]
# 或者: from model.common import default_conv [as 别名]
def __init__(self, conv=common.default_conv, n_feats=64, kernel_size=3, reg_act=nn.Softplus(), rescale=1, norm_f=None):
super(VarBlockSimple, self).__init__()
if norm_f is not None:
conv_mask = [norm_f, nn.Conv2d(n_feats, n_feats, kernel_size=kernel_size, padding=kernel_size//2, groups=n_feats), reg_act]
else:
conv_mask = [nn.Conv2d(n_feats, n_feats, kernel_size=kernel_size, padding=kernel_size//2, groups=n_feats), reg_act]
conv_body = [conv(n_feats, n_feats, kernel_size), nn.PReLU()]
self.rescale = rescale
self.conv_mask = nn.Sequential(*conv_mask)
self.conv_body = nn.Sequential(*conv_body)