本文整理汇总了Python中model.Net方法的典型用法代码示例。如果您正苦于以下问题:Python model.Net方法的具体用法?Python model.Net怎么用?Python model.Net使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类model
的用法示例。
在下文中一共展示了model.Net方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: generate_rollout
# 需要导入模块: import model [as 别名]
# 或者: from model import Net [as 别名]
def generate_rollout(self, iter_train, iter_dev, verbose=False):
self.log_probs = []
self.actions = []
self.entropies = []
self.reward = None
state = torch.zeros(self.hidden_size)
terminated = False
self.reward = 0
while not terminated:
log_prob, state, terminated = self.step(state)
self.log_probs.append(log_prob)
if verbose:
print('\nGenerated network:')
print(self.actions)
net = Net(self.actions)
accuracy = net.fit(iter_train, iter_dev)
self.reward += accuracy
return self.reward
示例2: main
# 需要导入模块: import model [as 别名]
# 或者: from model import Net [as 别名]
def main():
from train import Trainer
net=Net(VinConfig)
net=net.cuda()
net=net.double()
trainer=Trainer(VinConfig,net)
trainer.train()
示例3: hello_world
# 需要导入模块: import model [as 别名]
# 或者: from model import Net [as 别名]
def hello_world(args):
from functools import reduce
from operator import mul
model = Net(args).to(args.device)
state = model.state_dict()
total_size = 0
for key, value in state.items():
print(f'{key}: {value.size()}')
total_size += reduce(mul, value.size())
print(f'Parameters: {total_size} Size: {total_size * 4 / 1024 / 1024} MB')
示例4: summary
# 需要导入模块: import model [as 别名]
# 或者: from model import Net [as 别名]
def summary(args):
model = Net(args).to(args.device)
summary_(model, args.input_shape)
示例5: test
# 需要导入模块: import model [as 别名]
# 或者: from model import Net [as 别名]
def test(args):
print('load model...')
model = Net(args).to(args.device)
model.load_state_dict(torch.load(args.load))
print('build eval dataset...')
test_dataset = eval(args.dataset)(args.dataset_dir, 'test')
test_loader = DataLoader(test_dataset,
batch_size = 1,
shuffle = True,
num_workers = args.num_workers,
pin_memory = True)
total_batches = len(test_loader)
# logs
# ============================================================
time_logs = []; total_epe = 0
for batch_idx, (data, target) in enumerate(test_loader):
# Forward Pass
# ============================================================
t_start = time.time()
data, target = [d.to(args.device) for d in data], [t.to(args.device) for t in target]
with torch.no_grad():
flows, summaries = model(data[0])
time_logs.append(time.time() - t_start)
# Compute EPE
# ============================================================
# epe = EPE(flows, target[0])
# total_epe += epe.item()
print(f'[{batch_idx}/{total_batches}] Time: {time_logs[batch_idx]:.2f}s')# EPE:{total_epe / batch_idx}')
示例6: main
# 需要导入模块: import model [as 别名]
# 或者: from model import Net [as 别名]
def main(objects, **kwargs):
nets = [
model.Net(objects).cuda(),
model.Baseline(objects).cuda(),
]
loader = get_loader(objects, **kwargs)
plins = run(nets, loader, 1000, train=True)
accs = run(nets, loader, 200, train=False)
return {'plins': plins, 'accs': accs}
示例7: main
# 需要导入模块: import model [as 别名]
# 或者: from model import Net [as 别名]
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=512, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=512, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
model = Net(device=device).to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch)
test(args, model, device, test_loader)
示例8: pred
# 需要导入模块: import model [as 别名]
# 或者: from model import Net [as 别名]
def pred(args):
# Get environment
# Build Model
# ============================================================
model = Net(args).to(args.device)
model.load_state_dict(torch.load(args.load))
# Load Data
# ============================================================
x1_raw, x2_raw = map(imageio.imread, args.input)
class StaticCenterCrop(object):
def __init__(self, image_size, crop_size):
self.th, self.tw = crop_size
self.h, self.w = image_size
print(self.th, self.tw, self.h, self.w)
def __call__(self, img):
return img[(self.h-self.th)//2:(self.h+self.th)//2, (self.w-self.tw)//2:(self.w+self.tw)//2,:]
x1_raw = np.array(x1_raw)
x2_raw = np.array(x2_raw)
# if args.crop_shape is not None:
# cropper = StaticCenterCrop(x1_raw.shape[:2], args.crop_shape)
# x1_raw = cropper(x1_raw)
# x2_raw = cropper(x2_raw)
# if args.resize_shape is not None:
# resizer = partial(cv2.resize, dsize = (0,0), dst = args.resize_shape)
# x1_raw, x2_raw = map(resizer, [x1_raw, x2_raw])
# elif args.resize_scale is not None:
# resizer = partial(cv2.resize, dsize = (0,0), fx = args.resize_scale, fy = args.resize_scale)
# x1_raw, x2_raw = map(resizer, [x1_raw, x2_raw])
# pad to multiples of 64
H, W = x1_raw.shape[:2]
print(x1_raw.shape)
x1_raw = np.pad(x1_raw, ((0, (64 - H % 64) if H % 64 else 0), (0, (64 - W % 64) if H % 64 else 0), (0, 0)), mode = 'constant')
x2_raw = np.pad(x2_raw, ((0, (64 - H % 64) if H % 64 else 0), (0, (64 - W % 64) if H % 64 else 0), (0, 0)), mode = 'constant')
x1_raw = x1_raw[np.newaxis,:,:,:].transpose(0,3,1,2)
x2_raw = x2_raw[np.newaxis,:,:,:].transpose(0,3,1,2)
x = np.stack([x1_raw, x2_raw], axis = 2)
x = torch.Tensor(x).to(args.device)
# Forward Pass
# ============================================================
with torch.no_grad():
flows, summaries = model(x)
flow = flows[-1]
flow = np.array(flow.data).transpose(0,2,3,1).squeeze(0)
save_flow(args.output, flow)
flow_vis = vis_flow(flow)
imageio.imwrite(args.output.replace('.flo', '.png'), flow_vis)
import matplotlib.pyplot as plt
plt.imshow(flow_vis)
plt.show()