当前位置: 首页>>代码示例>>Python>>正文


Python ops.MaskedConv2d方法代码示例

本文整理汇总了Python中mmdet.ops.MaskedConv2d方法的典型用法代码示例。如果您正苦于以下问题:Python ops.MaskedConv2d方法的具体用法?Python ops.MaskedConv2d怎么用?Python ops.MaskedConv2d使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mmdet.ops的用法示例。


在下文中一共展示了ops.MaskedConv2d方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _init_layers

# 需要导入模块: from mmdet import ops [as 别名]
# 或者: from mmdet.ops import MaskedConv2d [as 别名]
def _init_layers(self):
        self.relu = nn.ReLU(inplace=True)
        self.conv_loc = nn.Conv2d(self.feat_channels, 1, 1)
        self.conv_shape = nn.Conv2d(self.feat_channels, self.num_anchors * 2,
                                    1)
        self.feature_adaption = FeatureAdaption(
            self.feat_channels,
            self.feat_channels,
            kernel_size=3,
            deformable_groups=self.deformable_groups)
        self.conv_cls = MaskedConv2d(self.feat_channels,
                                     self.num_anchors * self.cls_out_channels,
                                     1)
        self.conv_reg = MaskedConv2d(self.feat_channels, self.num_anchors * 4,
                                     1) 
开发者ID:dingjiansw101,项目名称:AerialDetection,代码行数:17,代码来源:guided_anchor_head.py

示例2: _init_layers

# 需要导入模块: from mmdet import ops [as 别名]
# 或者: from mmdet.ops import MaskedConv2d [as 别名]
def _init_layers(self):
        self.relu = nn.ReLU(inplace=True)
        self.conv_loc = nn.Conv2d(self.in_channels, 1, 1)
        self.conv_shape = nn.Conv2d(self.in_channels, self.num_anchors * 2, 1)
        self.feature_adaption = FeatureAdaption(
            self.in_channels,
            self.feat_channels,
            kernel_size=3,
            deformable_groups=self.deformable_groups)
        self.conv_cls = MaskedConv2d(self.feat_channels,
                                     self.num_anchors * self.cls_out_channels,
                                     1)
        self.conv_reg = MaskedConv2d(self.feat_channels, self.num_anchors * 4,
                                     1) 
开发者ID:open-mmlab,项目名称:mmdetection,代码行数:16,代码来源:guided_anchor_head.py

示例3: _init_layers

# 需要导入模块: from mmdet import ops [as 别名]
# 或者: from mmdet.ops import MaskedConv2d [as 别名]
def _init_layers(self):
        """Initialize layers of the head."""
        self.relu = nn.ReLU(inplace=True)
        self.cls_convs = nn.ModuleList()
        self.reg_convs = nn.ModuleList()
        for i in range(self.stacked_convs):
            chn = self.in_channels if i == 0 else self.feat_channels
            self.cls_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg))
            self.reg_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg))

        self.conv_loc = nn.Conv2d(self.feat_channels, 1, 1)
        self.conv_shape = nn.Conv2d(self.feat_channels, self.num_anchors * 2,
                                    1)
        self.feature_adaption_cls = FeatureAdaption(
            self.feat_channels,
            self.feat_channels,
            kernel_size=3,
            deformable_groups=self.deformable_groups)
        self.feature_adaption_reg = FeatureAdaption(
            self.feat_channels,
            self.feat_channels,
            kernel_size=3,
            deformable_groups=self.deformable_groups)
        self.retina_cls = MaskedConv2d(
            self.feat_channels,
            self.num_anchors * self.cls_out_channels,
            3,
            padding=1)
        self.retina_reg = MaskedConv2d(
            self.feat_channels, self.num_anchors * 4, 3, padding=1) 
开发者ID:open-mmlab,项目名称:mmdetection,代码行数:48,代码来源:ga_retina_head.py

示例4: _init_layers

# 需要导入模块: from mmdet import ops [as 别名]
# 或者: from mmdet.ops import MaskedConv2d [as 别名]
def _init_layers(self):
        self.relu = nn.ReLU(inplace=True)
        self.cls_convs = nn.ModuleList()
        self.reg_convs = nn.ModuleList()
        for i in range(self.stacked_convs):
            chn = self.in_channels if i == 0 else self.feat_channels
            self.cls_convs.append(
                ConvModule(chn,
                           self.feat_channels,
                           3,
                           stride=1,
                           padding=1,
                           conv_cfg=self.conv_cfg,
                           norm_cfg=self.norm_cfg))
            self.reg_convs.append(
                ConvModule(chn,
                           self.feat_channels,
                           3,
                           stride=1,
                           padding=1,
                           conv_cfg=self.conv_cfg,
                           norm_cfg=self.norm_cfg))

        self.conv_loc = nn.Conv2d(self.feat_channels, 1, 1)
        self.conv_shape = nn.Conv2d(self.feat_channels, self.num_anchors * 2,
                                    1)
        self.feature_adaption_cls = FeatureAdaption(
            self.feat_channels,
            self.feat_channels,
            kernel_size=3,
            deformable_groups=self.deformable_groups)
        self.feature_adaption_reg = FeatureAdaption(
            self.feat_channels,
            self.feat_channels,
            kernel_size=3,
            deformable_groups=self.deformable_groups)
        self.retina_cls = MaskedConv2d(self.feat_channels,
                                       self.num_anchors *
                                       self.cls_out_channels,
                                       3,
                                       padding=1)
        self.retina_reg = MaskedConv2d(self.feat_channels,
                                       self.num_anchors * 4,
                                       3,
                                       padding=1) 
开发者ID:dingjiansw101,项目名称:AerialDetection,代码行数:47,代码来源:ga_retina_head.py

示例5: _init_layers

# 需要导入模块: from mmdet import ops [as 别名]
# 或者: from mmdet.ops import MaskedConv2d [as 别名]
def _init_layers(self):
        self.relu = nn.ReLU(inplace=True)
        self.cls_convs = nn.ModuleList()
        self.reg_convs = nn.ModuleList()
        for i in range(self.stacked_convs):
            chn = self.in_channels if i == 0 else self.feat_channels
            self.cls_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg))
            self.reg_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg))

        self.conv_loc = nn.Conv2d(self.feat_channels, 1, 1)
        self.conv_shape = nn.Conv2d(self.feat_channels, self.num_anchors * 2,
                                    1)
        self.feature_adaption_cls = FeatureAdaption(
            self.feat_channels,
            self.feat_channels,
            kernel_size=3,
            deformable_groups=self.deformable_groups)
        self.feature_adaption_reg = FeatureAdaption(
            self.feat_channels,
            self.feat_channels,
            kernel_size=3,
            deformable_groups=self.deformable_groups)
        self.retina_cls = MaskedConv2d(
            self.feat_channels,
            self.num_anchors * self.cls_out_channels,
            3,
            padding=1)
        self.retina_reg = MaskedConv2d(
            self.feat_channels, self.num_anchors * 4, 3, padding=1) 
开发者ID:xieenze,项目名称:PolarMask,代码行数:47,代码来源:ga_retina_head.py


注:本文中的mmdet.ops.MaskedConv2d方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。