本文整理汇总了Python中mmdet.ops.MaskedConv2d方法的典型用法代码示例。如果您正苦于以下问题:Python ops.MaskedConv2d方法的具体用法?Python ops.MaskedConv2d怎么用?Python ops.MaskedConv2d使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mmdet.ops
的用法示例。
在下文中一共展示了ops.MaskedConv2d方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _init_layers
# 需要导入模块: from mmdet import ops [as 别名]
# 或者: from mmdet.ops import MaskedConv2d [as 别名]
def _init_layers(self):
self.relu = nn.ReLU(inplace=True)
self.conv_loc = nn.Conv2d(self.feat_channels, 1, 1)
self.conv_shape = nn.Conv2d(self.feat_channels, self.num_anchors * 2,
1)
self.feature_adaption = FeatureAdaption(
self.feat_channels,
self.feat_channels,
kernel_size=3,
deformable_groups=self.deformable_groups)
self.conv_cls = MaskedConv2d(self.feat_channels,
self.num_anchors * self.cls_out_channels,
1)
self.conv_reg = MaskedConv2d(self.feat_channels, self.num_anchors * 4,
1)
示例2: _init_layers
# 需要导入模块: from mmdet import ops [as 别名]
# 或者: from mmdet.ops import MaskedConv2d [as 别名]
def _init_layers(self):
self.relu = nn.ReLU(inplace=True)
self.conv_loc = nn.Conv2d(self.in_channels, 1, 1)
self.conv_shape = nn.Conv2d(self.in_channels, self.num_anchors * 2, 1)
self.feature_adaption = FeatureAdaption(
self.in_channels,
self.feat_channels,
kernel_size=3,
deformable_groups=self.deformable_groups)
self.conv_cls = MaskedConv2d(self.feat_channels,
self.num_anchors * self.cls_out_channels,
1)
self.conv_reg = MaskedConv2d(self.feat_channels, self.num_anchors * 4,
1)
示例3: _init_layers
# 需要导入模块: from mmdet import ops [as 别名]
# 或者: from mmdet.ops import MaskedConv2d [as 别名]
def _init_layers(self):
"""Initialize layers of the head."""
self.relu = nn.ReLU(inplace=True)
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
self.cls_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
self.reg_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
self.conv_loc = nn.Conv2d(self.feat_channels, 1, 1)
self.conv_shape = nn.Conv2d(self.feat_channels, self.num_anchors * 2,
1)
self.feature_adaption_cls = FeatureAdaption(
self.feat_channels,
self.feat_channels,
kernel_size=3,
deformable_groups=self.deformable_groups)
self.feature_adaption_reg = FeatureAdaption(
self.feat_channels,
self.feat_channels,
kernel_size=3,
deformable_groups=self.deformable_groups)
self.retina_cls = MaskedConv2d(
self.feat_channels,
self.num_anchors * self.cls_out_channels,
3,
padding=1)
self.retina_reg = MaskedConv2d(
self.feat_channels, self.num_anchors * 4, 3, padding=1)
示例4: _init_layers
# 需要导入模块: from mmdet import ops [as 别名]
# 或者: from mmdet.ops import MaskedConv2d [as 别名]
def _init_layers(self):
self.relu = nn.ReLU(inplace=True)
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
self.cls_convs.append(
ConvModule(chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
self.reg_convs.append(
ConvModule(chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
self.conv_loc = nn.Conv2d(self.feat_channels, 1, 1)
self.conv_shape = nn.Conv2d(self.feat_channels, self.num_anchors * 2,
1)
self.feature_adaption_cls = FeatureAdaption(
self.feat_channels,
self.feat_channels,
kernel_size=3,
deformable_groups=self.deformable_groups)
self.feature_adaption_reg = FeatureAdaption(
self.feat_channels,
self.feat_channels,
kernel_size=3,
deformable_groups=self.deformable_groups)
self.retina_cls = MaskedConv2d(self.feat_channels,
self.num_anchors *
self.cls_out_channels,
3,
padding=1)
self.retina_reg = MaskedConv2d(self.feat_channels,
self.num_anchors * 4,
3,
padding=1)
示例5: _init_layers
# 需要导入模块: from mmdet import ops [as 别名]
# 或者: from mmdet.ops import MaskedConv2d [as 别名]
def _init_layers(self):
self.relu = nn.ReLU(inplace=True)
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
self.cls_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
self.reg_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
self.conv_loc = nn.Conv2d(self.feat_channels, 1, 1)
self.conv_shape = nn.Conv2d(self.feat_channels, self.num_anchors * 2,
1)
self.feature_adaption_cls = FeatureAdaption(
self.feat_channels,
self.feat_channels,
kernel_size=3,
deformable_groups=self.deformable_groups)
self.feature_adaption_reg = FeatureAdaption(
self.feat_channels,
self.feat_channels,
kernel_size=3,
deformable_groups=self.deformable_groups)
self.retina_cls = MaskedConv2d(
self.feat_channels,
self.num_anchors * self.cls_out_channels,
3,
padding=1)
self.retina_reg = MaskedConv2d(
self.feat_channels, self.num_anchors * 4, 3, padding=1)