本文整理汇总了Python中mmdet.ops.DeformConv方法的典型用法代码示例。如果您正苦于以下问题:Python ops.DeformConv方法的具体用法?Python ops.DeformConv怎么用?Python ops.DeformConv使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mmdet.ops
的用法示例。
在下文中一共展示了ops.DeformConv方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from mmdet import ops [as 别名]
# 或者: from mmdet.ops import DeformConv [as 别名]
def __init__(self,
in_channels,
out_channels,
kernel_size=3,
deformable_groups=4):
super(FeatureAlign, self).__init__()
offset_channels = kernel_size * kernel_size * 2
self.conv_offset = nn.Conv2d(
4, deformable_groups * offset_channels, 1, bias=False)
self.conv_adaption = DeformConv(
in_channels,
out_channels,
kernel_size=kernel_size,
padding=(kernel_size - 1) // 2,
deformable_groups=deformable_groups)
self.relu = nn.ReLU(inplace=True)
示例2: __init__
# 需要导入模块: from mmdet import ops [as 别名]
# 或者: from mmdet.ops import DeformConv [as 别名]
def __init__(self,
in_channels,
out_channels,
kernel_size=3,
deformable_groups=4):
super(FeatureAdaption, self).__init__()
offset_channels = kernel_size * kernel_size * 2
self.conv_offset = nn.Conv2d(
2, deformable_groups * offset_channels, 1, bias=False)
self.conv_adaption = DeformConv(
in_channels,
out_channels,
kernel_size=kernel_size,
padding=(kernel_size - 1) // 2,
deformable_groups=deformable_groups)
self.relu = nn.ReLU(inplace=True)
示例3: __init__
# 需要导入模块: from mmdet import ops [as 别名]
# 或者: from mmdet.ops import DeformConv [as 别名]
def __init__(self,
in_channels,
out_channels,
kernel_size=3,
deformable_groups=4):
super(FeatureAdaption, self).__init__()
offset_channels = kernel_size * kernel_size * 2
self.conv_offset = nn.Conv2d(2,
deformable_groups * offset_channels,
1,
bias=False)
self.conv_adaption = DeformConv(in_channels,
out_channels,
kernel_size=kernel_size,
padding=(kernel_size - 1) // 2,
deformable_groups=deformable_groups)
self.relu = nn.ReLU(inplace=True)
示例4: __init__
# 需要导入模块: from mmdet import ops [as 别名]
# 或者: from mmdet.ops import DeformConv [as 别名]
def __init__(self,
in_channels,
out_channels,
kernel_size=3,
deformable_groups=4):
super(FeatureAlign, self).__init__()
offset_channels = kernel_size * kernel_size * 2
self.conv_offset = nn.Conv2d(4,
deformable_groups * offset_channels,
1,
bias=False)
self.conv_adaption = DeformConv(in_channels,
out_channels,
kernel_size=kernel_size,
padding=(kernel_size - 1) // 2,
deformable_groups=deformable_groups)
self.relu = nn.ReLU(inplace=True)
示例5: _init_layers
# 需要导入模块: from mmdet import ops [as 别名]
# 或者: from mmdet.ops import DeformConv [as 别名]
def _init_layers(self):
self.relu = nn.ReLU(inplace=True)
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
self.cls_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
self.reg_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
pts_out_dim = 4 if self.use_grid_points else 2 * self.num_points
self.reppoints_cls_conv = DeformConv(self.feat_channels,
self.point_feat_channels,
self.dcn_kernel, 1, self.dcn_pad)
self.reppoints_cls_out = nn.Conv2d(self.point_feat_channels,
self.cls_out_channels, 1, 1, 0)
self.reppoints_pts_init_conv = nn.Conv2d(self.feat_channels,
self.point_feat_channels, 3,
1, 1)
self.reppoints_pts_init_out = nn.Conv2d(self.point_feat_channels,
pts_out_dim, 1, 1, 0)
self.reppoints_pts_refine_conv = DeformConv(self.feat_channels,
self.point_feat_channels,
self.dcn_kernel, 1,
self.dcn_pad)
self.reppoints_pts_refine_out = nn.Conv2d(self.point_feat_channels,
pts_out_dim, 1, 1, 0)
示例6: __init__
# 需要导入模块: from mmdet import ops [as 别名]
# 或者: from mmdet.ops import DeformConv [as 别名]
def __init__(self, in_channels, out_channels, dilation=1, adapt=True):
super(AdaptiveConv, self).__init__()
self.adapt = adapt
if self.adapt:
assert dilation == 1
self.conv = DeformConv(in_channels, out_channels, 3, padding=1)
else: # fallback to normal Conv2d
self.conv = nn.Conv2d(
in_channels,
out_channels,
3,
padding=dilation,
dilation=dilation)
示例7: _init_layers
# 需要导入模块: from mmdet import ops [as 别名]
# 或者: from mmdet.ops import DeformConv [as 别名]
def _init_layers(self):
"""Initialize layers of the head."""
self.relu = nn.ReLU(inplace=True)
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
self.cls_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
self.reg_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
pts_out_dim = 4 if self.use_grid_points else 2 * self.num_points
self.reppoints_cls_conv = DeformConv(self.feat_channels,
self.point_feat_channels,
self.dcn_kernel, 1, self.dcn_pad)
self.reppoints_cls_out = nn.Conv2d(self.point_feat_channels,
self.cls_out_channels, 1, 1, 0)
self.reppoints_pts_init_conv = nn.Conv2d(self.feat_channels,
self.point_feat_channels, 3,
1, 1)
self.reppoints_pts_init_out = nn.Conv2d(self.point_feat_channels,
pts_out_dim, 1, 1, 0)
self.reppoints_pts_refine_conv = DeformConv(self.feat_channels,
self.point_feat_channels,
self.dcn_kernel, 1,
self.dcn_pad)
self.reppoints_pts_refine_out = nn.Conv2d(self.point_feat_channels,
pts_out_dim, 1, 1, 0)